4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Flexible Metamaterial Electronics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Locally resonant sonic materials

          Liu, Zhang, Mao (2000)
          We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidermal electronics.

            We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controlling electromagnetic fields.

              Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                December 2022
                July 19 2022
                December 2022
                : 34
                : 52
                : 2200070
                Affiliations
                [1 ]State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan 430074 China
                [2 ]Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan 430074 China
                Article
                10.1002/adma.202200070
                8405496e-58fd-471b-af55-bc95c8488975
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article