4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The prediction of therapy-benefit for individual cardiovascular disease prevention : rationale, implications, and implementation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aim to outline the importance and the clinical implications of using predicted individual therapy-benefit in making patient-centered treatment decisions in cardiovascular disease (CVD) prevention. Therapy-benefit concepts will be illustrated with examples of patients undergoing lipid management.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Socioeconomic Status and Cardiovascular Outcomes

          Socioeconomic status (SES) has a measurable and significant effect on cardiovascular health. Biological, behavioral, and psychosocial risk factors prevalent in disadvantaged individuals accentuate the link between SES and cardiovascular disease (CVD). Four measures have been consistently associated with CVD in high-income countries: income level, educational attainment, employment status, and neighborhood socioeconomic factors. In addition, disparities based on sex have been shown in several studies. Interventions targeting patients with low SES have predominantly focused on modification of traditional CVD risk factors. Promising approaches are emerging that can be implemented on an individual, community, or population basis to reduce disparities in outcomes. Structured physical activity has demonstrated effectiveness in low-SES populations, and geomapping may be used to identify targets for large-scale programs. Task shifting, the redistribution of healthcare management from physician to nonphysician providers in an effort to improve access to health care, may have a role in select areas. Integration of SES into the traditional CVD risk prediction models may allow improved management of individuals with high risk, but cultural and regional differences in SES make generalized implementation challenging. Future research is required to better understand the underlying mechanisms of CVD risk that affect individuals of low SES and to determine effective interventions for patients with high risk. We review the current state of knowledge on the impact of SES on the incidence, treatment, and outcomes of CVD in high-income societies and suggest future research directions aimed at the elimination of these adverse factors, and the integration of measures of SES into the customization of cardiovascular treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score.

            Despite improved understanding of atherothrombosis, cardiovascular prediction algorithms for women have largely relied on traditional risk factors. To develop and validate cardiovascular risk algorithms for women based on a large panel of traditional and novel risk factors. Thirty-five factors were assessed among 24 558 initially healthy US women 45 years or older who were followed up for a median of 10.2 years (through March 2004) for incident cardiovascular events (an adjudicated composite of myocardial infarction, ischemic stroke, coronary revascularization, and cardiovascular death). We used data among a random two thirds (derivation cohort, n = 16 400) to develop new risk algorithms that were then tested to compare observed and predicted outcomes in the remaining one third of women (validation cohort, n = 8158). Minimization of the Bayes Information Criterion was used in the derivation cohort to develop the best-fitting parsimonious prediction models. In the validation cohort, we compared predicted vs actual 10-year cardiovascular event rates when the new algorithms were compared with models based on covariates included in the Adult Treatment Panel III risk score. In the derivation cohort, a best-fitting model (model A) and a clinically simplified model (model B, the Reynolds Risk Score) had lower Bayes Information Criterion scores than models based on covariates used in Adult Treatment Panel III. In the validation cohort, all measures of fit, discrimination, and calibration were improved when either model A or B was used. For example, among participants without diabetes with estimated 10-year risks according to the Adult Treatment Panel III of 5% to less than 10% (n = 603) or 10% to less than 20% (n = 156), model A reclassified 379 (50%) into higher- or lower-risk categories that in each instance more accurately matched actual event rates. Similar effects were achieved for clinically simplified model B limited to age, systolic blood pressure, hemoglobin A(1c) if diabetic, smoking, total and high-density lipoprotein cholesterol, high-sensitivity C-reactive protein, and parental history of myocardial infarction before age 60 years. Neither new algorithm provided substantive information about women at very low risk based on the published Adult Treatment Panel III score. We developed, validated, and demonstrated highly improved accuracy of 2 clinical algorithms for global cardiovascular risk prediction that reclassified 40% to 50% of women at intermediate risk into higher- or lower-risk categories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-dose colchicine for secondary prevention of cardiovascular disease.

              The objective of this study was to determine whether colchicine 0.5 mg/day can reduce the risk of cardiovascular events in patients with clinically stable coronary disease. The presence of activated neutrophils in culprit atherosclerotic plaques of patients with unstable coronary disease raises the possibility that inhibition of neutrophil function with colchicine may reduce the risk of plaque instability and thereby improve clinical outcomes in patients with stable coronary disease. In a clinical trial with a prospective, randomized, observer-blinded endpoint design, 532 patients with stable coronary disease receiving aspirin and/or clopidogrel (93%) and statins (95%) were randomly assigned colchicine 0.5 mg/day or no colchicine and followed for a median of 3 years. The primary outcome was the composite incidence of acute coronary syndrome, out-of-hospital cardiac arrest, or noncardioembolic ischemic stroke. The primary analysis was by intention-to-treat. The primary outcome occurred in 15 of 282 patients (5.3%) who received colchicine and 40 of 250 patients (16.0%) assigned no colchicine (hazard ratio: 0.33; 95% confidence interval [CI] 0.18 to 0.59; p < 0.001; number needed to treat: 11). In a pre-specified secondary on-treatment analysis that excluded 32 patients (11%) assigned to colchicine who withdrew within 30 days due to intestinal intolerance and a further 7 patients (2%) who did not start treatment, the primary outcome occurred in 4.5% versus 16.0% (hazard ratio: 0.29; 95% CI: 0.15 to 0.56; p < 0.001). Colchicine 0.5 mg/day administered in addition to statins and other standard secondary prevention therapies appeared effective for the prevention of cardiovascular events in patients with stable coronary disease. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Lipidology
                Current Opinion in Lipidology
                Ovid Technologies (Wolters Kluwer Health)
                0957-9672
                2018
                September 2018
                : 1
                Article
                10.1097/MOL.0000000000000554
                30234556
                83f11e0c-8ea6-48b2-ba85-0a491c07d92d
                © 2018
                History

                Comments

                Comment on this article