4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue-Specific 1H-NMR Metabolomic Profiling in Mice with Adenine-Induced Chronic Kidney Disease

      research-article
      1 , 1 , 1 , 2 , 3 , *
      Metabolites
      MDPI
      CKD, uremia, metabolism, muscle, cardiac, liver, catabolism

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) results in the impaired filtration of metabolites, which may be toxic or harmful to organs/tissues. The objective of this study was to perform unbiased 1H nuclear magnetic resonance (NMR)-based metabolomics profiling of tissues from mice with CKD. Five-month-old male C57BL6J mice were placed on either a casein control diet or adenine-supplemented diet to induce CKD for 24 weeks. CKD was confirmed by significant increases in blood urea nitrogen (24.1 ± 7.7 vs. 105.3 ± 18.3 mg/dL, p < 0.0001) in adenine-fed mice. Following this chronic adenine diet, the kidney, heart, liver, and quadriceps muscles were rapidly dissected; snap-frozen in liquid nitrogen; and the metabolites were extracted. Metabolomic profiling coupled with multivariate analyses confirm clear separation in both aqueous and organic phases between control and CKD mice. Severe energetic stress and apparent impaired mitochondrial metabolism were observed in CKD kidneys evidenced by the depletion of ATP and NAD +, along with significant alterations in tricarboxylic acid (TCA) cycle intermediates. Altered amino acid metabolism was observed in all tissues, although significant differences in specific amino acids varied across tissue types. Taken together, this study provides a metabolomics fingerprint of multiple tissues from mice with and without severe CKD induced by chronic adenine feeding.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

            Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic kidney disease: global dimension and perspectives.

              Chronic kidney disease is defined as a reduced glomerular filtration rate, increased urinary albumin excretion, or both, and is an increasing public health issue. Prevalence is estimated to be 8-16% worldwide. Complications include increased all-cause and cardiovascular mortality, kidney-disease progression, acute kidney injury, cognitive decline, anaemia, mineral and bone disorders, and fractures. Worldwide, diabetes mellitus is the most common cause of chronic kidney disease, but in some regions other causes, such as herbal and environmental toxins, are more common. The poorest populations are at the highest risk. Screening and intervention can prevent chronic kidney disease, and where management strategies have been implemented the incidence of end-stage kidney disease has been reduced. Awareness of the disorder, however, remains low in many communities and among many physicians. Strategies to reduce burden and costs related to chronic kidney disease need to be included in national programmes for non-communicable diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Metabolites
                Metabolites
                metabolites
                Metabolites
                MDPI
                2218-1989
                10 January 2021
                January 2021
                : 11
                : 1
                : 45
                Affiliations
                [1 ]Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; rbk11@ 123456ufl.edu (R.B.K.); trthome@ 123456ufl.edu (T.T.)
                [2 ]Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA
                [3 ]Myology Institute, University of Florida, Gainesville, FL 32611, USA
                Author notes
                [* ]Correspondence: ryant@ 123456ufl.edu ; Tel.: +1-352-294-1700
                Author information
                https://orcid.org/0000-0001-9991-263X
                https://orcid.org/0000-0003-4823-8547
                https://orcid.org/0000-0003-0780-029X
                Article
                metabolites-11-00045
                10.3390/metabo11010045
                7827497
                33435175
                83dfe762-9b5c-4bdc-a1fe-ed79a1324604
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 December 2020
                : 07 January 2021
                Categories
                Article

                ckd,uremia,metabolism,muscle,cardiac,liver,catabolism
                ckd, uremia, metabolism, muscle, cardiac, liver, catabolism

                Comments

                Comment on this article