4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An introduction to inverse probability of treatment weighting in observational research

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          In this article we introduce the concept of inverse probability of treatment weighting (IPTW) and describe how this method can be applied to adjust for measured confounding in observational research, illustrated by a clinical example from nephrology. IPTW involves two main steps. First, the probability—or propensity—of being exposed to the risk factor or intervention of interest is calculated, given an individual’s characteristics (i.e. propensity score). Second, weights are calculated as the inverse of the propensity score. The application of these weights to the study population creates a pseudopopulation in which confounders are equally distributed across exposed and unexposed groups. We also elaborate on how weighting can be applied in longitudinal studies to deal with informative censoring and time-dependent confounding in the setting of treatment-confounder feedback.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies

          The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects. I describe 4 different propensity score methods: matching on the propensity score, stratification on the propensity score, inverse probability of treatment weighting using the propensity score, and covariate adjustment using the propensity score. I describe balance diagnostics for examining whether the propensity score model has been adequately specified. Furthermore, I discuss differences between regression-based methods and propensity score-based methods for the analysis of observational data. I describe different causal average treatment effects and their relationship with propensity score analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples

            The propensity score is a subject's probability of treatment, conditional on observed baseline covariates. Conditional on the true propensity score, treated and untreated subjects have similar distributions of observed baseline covariates. Propensity-score matching is a popular method of using the propensity score in the medical literature. Using this approach, matched sets of treated and untreated subjects with similar values of the propensity score are formed. Inferences about treatment effect made using propensity-score matching are valid only if, in the matched sample, treated and untreated subjects have similar distributions of measured baseline covariates. In this paper we discuss the following methods for assessing whether the propensity score model has been correctly specified: comparing means and prevalences of baseline characteristics using standardized differences; ratios comparing the variance of continuous covariates between treated and untreated subjects; comparison of higher order moments and interactions; five-number summaries; and graphical methods such as quantile–quantile plots, side-by-side boxplots, and non-parametric density plots for comparing the distribution of baseline covariates between treatment groups. We describe methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero, thereby allowing one to determine the range of standardized differences that are plausible with the propensity score model having been correctly specified. We highlight the limitations of some previously used methods for assessing the adequacy of the specification of the propensity-score model. In particular, methods based on comparing the distribution of the estimated propensity score between treated and untreated subjects are uninformative. Copyright © 2009 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies

              The propensity score is defined as a subject's probability of treatment selection, conditional on observed baseline covariates. Weighting subjects by the inverse probability of treatment received creates a synthetic sample in which treatment assignment is independent of measured baseline covariates. Inverse probability of treatment weighting (IPTW) using the propensity score allows one to obtain unbiased estimates of average treatment effects. However, these estimates are only valid if there are no residual systematic differences in observed baseline characteristics between treated and control subjects in the sample weighted by the estimated inverse probability of treatment. We report on a systematic literature review, in which we found that the use of IPTW has increased rapidly in recent years, but that in the most recent year, a majority of studies did not formally examine whether weighting balanced measured covariates between treatment groups. We then proceed to describe a suite of quantitative and qualitative methods that allow one to assess whether measured baseline covariates are balanced between treatment groups in the weighted sample. The quantitative methods use the weighted standardized difference to compare means, prevalences, higher‐order moments, and interactions. The qualitative methods employ graphical methods to compare the distribution of continuous baseline covariates between treated and control subjects in the weighted sample. Finally, we illustrate the application of these methods in an empirical case study. We propose a formal set of balance diagnostics that contribute towards an evolving concept of ‘best practice’ when using IPTW to estimate causal treatment effects using observational data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Clin Kidney J
                Clin Kidney J
                ckj
                Clinical Kidney Journal
                Oxford University Press
                2048-8505
                2048-8513
                January 2022
                26 August 2021
                26 August 2021
                : 15
                : 1
                : 14-20
                Affiliations
                ERA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute , Amsterdam, The Netherlands
                ERA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute , Amsterdam, The Netherlands
                CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension , Reggio Calabria, Italy
                Department of Clinical Epidemiology, Leiden University Medical Center , Leiden, The Netherlands
                Department of Clinical Epidemiology, Leiden University Medical Center , Leiden, The Netherlands
                Department of Medical Epidemiology and Biostatistics, Karolinska Institute , Stockholm, Sweden
                CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension , Reggio Calabria, Italy
                ERA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute , Amsterdam, The Netherlands
                Author notes
                Correspondence to: Nicholas C. Chesnaye; E-mail: n.c.chesnaye@ 123456amsterdamumc.nl
                Author information
                https://orcid.org/0000-0002-9698-6825
                Article
                sfab158
                10.1093/ckj/sfab158
                8757413
                35035932
                83aeb306-044a-4ac7-92e4-e6887b2af2e0
                © The Author(s) 2021. Published by Oxford University Press on behalf of ERA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 22 July 2021
                : 10 August 2021
                : 07 October 2021
                Page count
                Pages: 7
                Categories
                CKJ Review
                AcademicSubjects/MED00340

                Nephrology
                chronic renal insufficiency,dialysis,epidemiology,guidelines,systematic review
                Nephrology
                chronic renal insufficiency, dialysis, epidemiology, guidelines, systematic review

                Comments

                Comment on this article