10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Importance of the gut microbiota in the gut-liver axis in normal and liver disease

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota is of growing interest to clinicians and researchers. This is because there is a growing understanding that the gut microbiota performs many different functions, including involvement in metabolic and immune processes that are systemic in nature. The liver, with its important role in detoxifying and metabolizing products from the gut, is at the forefront of interactions with the gut microbiota. Many details of these interactions are not yet known to clinicians and researchers, but there is growing evidence that normal gut microbiota function is important for liver health. At the same time, factors affecting the gut microbiota, including nutrition or medications, may also have an effect through the gut-liver axis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial ecology: human gut microbes associated with obesity.

          Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut microbiota as an environmental factor that regulates fat storage.

            New therapeutic targets for noncognitive reductions in energy intake, absorption, or storage are crucial given the worldwide epidemic of obesity. The gut microbial community (microbiota) is essential for processing dietary polysaccharides. We found that conventionalization of adult germ-free (GF) C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake. Studies of GF and conventionalized mice revealed that the microbiota promotes absorption of monosaccharides from the gut lumen, with resulting induction of de novo hepatic lipogenesis. Fasting-induced adipocyte factor (Fiaf), a member of the angiopoietin-like family of proteins, is selectively suppressed in the intestinal epithelium of normal mice by conventionalization. Analysis of GF and conventionalized, normal and Fiaf knockout mice established that Fiaf is a circulating lipoprotein lipase inhibitor and that its suppression is essential for the microbiota-induced deposition of triglycerides in adipocytes. Studies of Rag1-/- animals indicate that these host responses do not require mature lymphocytes. Our findings suggest that the gut microbiota is an important environmental factor that affects energy harvest from the diet and energy storage in the host. Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AY 667702--AY 668946).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introduction to the human gut microbiota

              The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Hepatol
                WJH
                World Journal of Hepatology
                Baishideng Publishing Group Inc
                1948-5182
                27 June 2024
                27 June 2024
                : 16
                : 6
                : 878-882
                Affiliations
                Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia. skmr1@ 123456yandex.ru
                Author notes

                Author contributions: Kotlyarov S conceptualization, methodology, validation, resources, data curation, writing-original draft preparation, writing-review and editing, supervision, project administration.

                Corresponding author: Stanislav Kotlyarov, PhD, Academic Research, Department of Nursing, Ryazan State Medical University, Vysokovoltnaya St. 9, Ryazan 390026, Russia. skmr1@ 123456yandex.ru

                Article
                jWJH.v16.i6.pg878 93661
                10.4254/wjh.v16.i6.878
                11212653
                83a13ce5-a551-4bfc-a023-e3ca49574150
                ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 3 March 2024
                : 1 May 2024
                : 17 May 2024
                Categories
                Editorial

                gut microbiota,liver,gut-liver axis,immunity,non-alcoholic fatty liver disease

                Comments

                Comment on this article