39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: “The Worminator”

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • An objective, easy-to-use and inexpensive system for quantifying motility.

          • Measured motility response for 3 nematodes and 3 life stages with 7 anthelmintics.

          • Consistent parasite hyper-motility at sub-paralytic concentrations.

          • Motility may not be assay of choice for macrocyclic lactones.

          Abstract

          A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the “Worminator” system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application “WormAssay”, developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the “Worminator” provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input, and yields objective motility data that is not subject to scorer bias.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          An inconvenient truth: global worming and anthelmintic resistance.

          Over the past 10-15 years, we have witnessed a rapid increase in both the prevalence and magnitude of anthelmintic resistance, and this increase appears to be a worldwide phenomenon. Reports of anthelmintic resistance to multiple drugs in individual parasite species, and in multiple parasite species across virtually all livestock hosts, are increasingly common. In addition, since the introduction of ivermectin in 1981, no novel anthelmintic classes were developed and introduced for use in livestock until recently with the launch of monepantel in New Zealand. Thus, livestock producers are often left with few options for effective treatment against many important parasite species. While new anthelmintic classes with novel mechanisms of action could potentially solve this problem, new drugs are extremely expensive to develop, and can be expected to be more expensive than older drugs. Thus, it seems clear that the "Global Worming" approach that has taken hold over the past 40-50 years must change, and livestock producers must develop a new vision for parasite control and sustainability of production. Furthermore, parasitologists must improve methods for study design and data analysis that are used for diagnosing anthelmintic resistance, especially for the fecal egg count reduction test (FECRT). Currently, standards for diagnosis of anthelmintic resistance using FECRT exist only for sheep. Lack of standards in horses and cattle and arbitrarily defined cutoffs for defining resistance, combined with inadequate analysis of the data, mean that errors in assigning resistance status are common. Similarly, the lack of standards makes it difficult to compare data among different studies. This problem needs to be addressed, because as new drugs are introduced now and in the future, the lack of alternative treatments will make early and accurate diagnosis of anthelmintic resistance increasingly important. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study.

            Ivermectin has been used for onchocerciasis control since 1987. Because of the long-term use of this drug and the development of resistance in other nematodes, we have assessed Onchocerca volvulus burdens, effectiveness of ivermectin as a microfilaricide, and its effect on adult female worm reproduction. For the first phase of the study, 2501 individuals in Ghana, from 19 endemic communities who had received six to 18 annual rounds of ivermectin and one ivermectin naive community, were assessed for microfilarial loads 7 days before the 2004 yearly ivermectin treatment, by means of skin snips, and 30 days after treatment to assess the ivermectin microfilaricidal action. For the second phase, skin snips were taken from 342 individuals from ten communities, who were microfilaria positive at pretreatment assessment, on days 90 and 180 after treatment, to identify the effects of ivermectin on female worm fertility, assessed by microfilaria repopulation. 487 (19%) of the 2501 participants were microfilaria positive. The microfilaria prevalence and community microfilarial load in treated communities ranged from 2.2% to 51.8%, and 0.06 microfilariae per snip to 2.85 microfilariae per snip, respectively. Despite treatment, the prevalence rate doubled between 2000 and 2005 in two communities. Microfilaria assessment 30 days after ivermectin treatment showed 100% clearance of microfilaria in more than 99% of people. At day 90 after treatment, four of ten communities had significant microfilaria repopulation, from 7.1% to 21.1% of pretreatment counts, rising to 53.9% by day 180. Ivermectin remains a potent microfilaricide. However, our results suggest that resistant adult parasite populations, which are not responding as expected to ivermectin, are emerging. A high rate of repopulation of skin with microfilariae will allow parasite transmission, possibly with ivermectin-resistant O volvulus, which could eventually lead to recrudescence of the disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics.

              The macrocyclic lactones are the biggest selling and arguably most effective anthelmintics currently available. They are good substrates for the P-glycoproteins, which might explain their selective toxicity for parasites over their vertebrate hosts. Changes in the expression of these pumps have been implicated in resistance to the macrocyclic lactones, but it is clear that they exert their anthelmintic effects by binding to glutamate-gated chloride channels expressed on nematode neurones and pharyngeal muscle cells. This effect is quite distinct from the channel opening induced by glutamate, the endogenous transmitter acting at these receptors, which produces rapidly opening and desensitising channels. Ivermectin-activated channels open very slowly but essentially irreversibly, leading to a very long-lasting hyperpolarisation or depolarisation of the neurone or muscle cell and therefore blocking further function. Molecular and genetic studies have shown that there are multiple GluCl isoforms in both free-living and parasitic nematodes: the exact genetic make-up and functions of the GluCl may vary between species. The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Drugs Drug Resist
                Int J Parasitol Drugs Drug Resist
                International Journal for Parasitology: Drugs and Drug Resistance
                Elsevier
                2211-3207
                28 August 2014
                28 August 2014
                December 2014
                : 4
                : 3
                : 233-243
                Affiliations
                [a ]Department of Infectious Diseases, University of Georgia, Athens, GA, USA
                [b ]Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
                [c ]Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, CA, USA
                [d ]Case Western Reserve University School of Medicine, Cleveland, OH, USA
                [e ]Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
                Author notes
                [* ]Corresponding author. Address: Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA. Tel.: +1 706 542 0195; fax: +1 706 542 5771. bstorey@ 123456uga.edu
                Article
                S2211-3207(14)00023-2
                10.1016/j.ijpddr.2014.08.003
                4266792
                25516834
                8392f530-d6e1-42e9-a60b-65a0a5dd0b37
                © 2014 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                Categories
                Article

                anthelmintic resistance,brugia malayi,dirofilaria immitis,trichostrongyle,microfilaria,motility measurement

                Comments

                Comment on this article