13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the important role of amyloid precursor protein (APP) in vascular diseases associated with Alzheimer's disease (AD) has been demonstrated, the underlying molecular mechanisms and physiological consequences are unclear. We aimed to evaluate vascular inflammation and atherosclerosis in Swedish mutant of human APP transgenic (APPsw-Tg) and ApoE -/-/APPsw-Tg mice. We also aimed to explore the mechanisms underlying any changes observed in these mice compared with non-Tg controls. Methods: The transgenic and non-Tg mouse strains were subjected to partial ligation of the left carotid artery to induce atherosclerotic changes, which were measured using histological approaches, immunohistochemistry, quantitative polymerase chain reaction, and gene expression microarrays. Results: Our results showed increased vascular inflammation, arterial wall thickness, and atherosclerosis in APPsw-Tg and ApoE -/-/APPsw-Tg mice. We further found that the expression of chitinase-3-like-1 (Chi3l1) is increased in the APPsw-Tg mouse artery and Chi3l1 mediates endothelial cell (EC) inflammation and vascular smooth muscle cell (VSMC) activation, which in turn exacerbates atherosclerosis. In addition, using two publicly available microarray datasets from the dorsolateral prefrontal cortex of people with AD and unaffected controls as well as inflamed human umbilical vein endothelial cells, we found that Chi3l1 and associated inflammatory gene were significantly associated with AD, evaluated by co-expression network analysis and functional annotation. Knockdown of Chi3l1 in the arterial endothelium in vivo suppressed the development of atherosclerosis. We also show that microRNA 342-3p (miR-342-3p) inhibits EC inflammation and VSMC activation through directly targeting Chi3l1, and that APPsw increased Chi3l1 expression by reducing miR-342-3p expression in the arterial endothelium, promoting atherosclerosis. Conclusion: Our findings suggest that targeting Chi3l1 might provide new diagnostic and therapeutic strategies for vascular diseases in patients with AD.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.

            Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation in Alzheimer disease: driving force, bystander or beneficial response?

              Alzheimer disease is a progressive dementia with unknown etiology that affects a growing number of the aging population. Increased expression of inflammatory mediators in postmortem brains of people with Alzheimer disease has been reported, and epidemiological studies link the use of anti-inflammatory drugs with reduced risk for the disorder. On the initial basis of this kind of evidence, inflammation has been proposed as a possible cause or driving force of Alzheimer disease. If true, this could have important implications for the development of new treatments. Alternatively, inflammation could simply be a byproduct of the disease process and may not substantially alter its course. Or components of the inflammatory response might even be beneficial and slow the disease. To address these possibilities, we need to determine whether inflammation in Alzheimer disease is an early event, whether it is genetically linked with the disease and whether manipulation of inflammatory pathways changes the course of the pathology. Although there is still little evidence that inflammation triggers or promotes Alzheimer disease, increasing evidence from mouse models suggests that certain inflammatory mediators are potent drivers of the disease. Related factors, on the other hand, elicit beneficial responses and can reduce disease.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2018
                1 January 2018
                : 8
                : 3
                : 749-766
                Affiliations
                [1 ]College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea;
                [2 ]Department of Dental Hygiene, Gwangyang Health Sciences University, Gwangyang, Jeonnam 57764, Korea;
                [3 ]Department of Molecular Biology and Institute of Nanosensor Biotechnology, Dankook University, Yongin, Gyeonggi 16890, Korea;
                [4 ]Division of Life & Pharmaceutical Sciences, and the Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
                [5 ]Life Science Research Center, NovaKmed Co. Ltd., 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
                [6 ]College of Biomaterials Science, Pusan National University, Miryang, Kyungnam 50463, Korea;
                [7 ]Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850, USA.
                Author notes
                ✉ Corresponding authors: Jin Tae Hong, Ph.D., Professor/Chief of Director, College of Pharmacy & Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-Biocampus Building Room 301, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Korea, Telephone: 82-43-261-2813, FAX: 82-43-268-2732, E-mail: jinthong@ 123456chungbuk.ac.kr or Dong Ju Son, Ph.D., Professor/Chief Technology Officer, Life Science Research Center, NovaKmed Co. Ltd., 1646 Yuseong-daero, Innobiz Park Suite 403, Yuseong-gu, Daejeon 34054, Korea, Telephone: 82-70-4852-2396, E-mail: sondj1@ 123456chungbuk.ac.kr / sondj1@ 123456novarex.co.kr

                * These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov08p0749
                10.7150/thno.20183
                5771091
                29344304
                8380db9c-a5d0-4e46-9534-022031276551
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 21 March 2017
                : 9 November 2017
                Categories
                Research Paper

                Molecular medicine
                alzheimer's diseases,amyloid precursor protein,atherosclerosis,chitinase-3-like-1,endothelial cells,microrna 342-3p.

                Comments

                Comment on this article