13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phishing Detection: Analysis of Visual Similarity Based Approaches

      ,
      Security and Communication Networks
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phishing is one of the major problems faced by cyber-world and leads to financial losses for both industries and individuals. Detection of phishing attack with high accuracy has always been a challenging issue. At present, visual similarities based techniques are very useful for detecting phishing websites efficiently. Phishing website looks very similar in appearance to its corresponding legitimate website to deceive users into believing that they are browsing the correct website. Visual similarity based phishing detection techniques utilise the feature set like text content, text format, HTML tags, Cascading Style Sheet (CSS), image, and so forth, to make the decision. These approaches compare the suspicious website with the corresponding legitimate website by using various features and if the similarity is greater than the predefined threshold value then it is declared phishing. This paper presents a comprehensive analysis of phishing attacks, their exploitation, some of the recent visual similarity based approaches for phishing detection, and its comparative study. Our survey provides a better understanding of the problem, current solution space, and scope of future research to deal with phishing attacks efficiently using visual similarity based approaches.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Incremental Support Vector Learning for Ordinal Regression.

          Support vector ordinal regression (SVOR) is a popular method to tackle ordinal regression problems. However, until now there were no effective algorithms proposed to address incremental SVOR learning due to the complicated formulations of SVOR. Recently, an interesting accurate on-line algorithm was proposed for training ν -support vector classification (ν-SVC), which can handle a quadratic formulation with a pair of equality constraints. In this paper, we first present a modified SVOR formulation based on a sum-of-margins strategy. The formulation has multiple constraints, and each constraint includes a mixture of an equality and an inequality. Then, we extend the accurate on-line ν-SVC algorithm to the modified formulation, and propose an effective incremental SVOR algorithm. The algorithm can handle a quadratic formulation with multiple constraints, where each constraint is constituted of an equality and an inequality. More importantly, it tackles the conflicts between the equality and inequality constraints. We also provide the finite convergence analysis for the algorithm. Numerical experiments on the several benchmark and real-world data sets show that the incremental algorithm can converge to the optimal solution in a finite number of steps, and is faster than the existing batch and incremental SVOR algorithms. Meanwhile, the modified formulation has better accuracy than the existing incremental SVOR algorithm, and is as accurate as the sum-of-margins based formulation of Shashua and Levin.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Social phishing

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Data mining for credit card fraud: A comparative study

                Bookmark

                Author and article information

                Journal
                Security and Communication Networks
                Security and Communication Networks
                Hindawi Limited
                1939-0114
                1939-0122
                2017
                2017
                : 2017
                :
                : 1-20
                Article
                10.1155/2017/5421046
                837f879c-5abd-4abb-86b1-b9e915ad20e6
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article