31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection

      1 , 1
      Journal of Cerebral Blood Flow & Metabolism
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d272003e121">Administration of anesthetic agents fundamentally shifts the responsibility for maintenance of homeostasis from the patient and their intrinsic physiological regulatory mechanisms to the anesthesiologist. Continuous delivery of oxygen and nutrients to the brain is necessary to prevent irreversible injury and arises from a complex series of regulatory mechanisms that ensure uninterrupted cerebral blood flow. Our understanding of these regulatory mechanisms and the effects of anesthetics on them has been driven by the tireless work of pioneers in the field. It is of paramount importance that the anesthesiologist shares this understanding. Herein, we will review the physiological determinants of cerebral blood flow and how delivery of anesthesia impacts these processes. </p>

          Related collections

          Most cited references212

          • Record: found
          • Abstract: found
          • Article: not found

          Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.

          The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of increasing plasma concentrations of dexmedetomidine in humans.

            This study determined the responses to increasing plasma concentrations of dexmedetomidine in humans. Ten healthy men (20-27 yr) provided informed consent and were monitored (underwent electrocardiography, measured arterial, central venous [CVP] and pulmonary artery [PAP] pressures, cardiac output, oxygen saturation, end-tidal carbon dioxide [ETCO2], respiration, blood gas, and catecholamines). Hemodynamic measurements, blood sampling, and psychometric, cold pressor, and baroreflex tests were performed at rest and during sequential 40-min intravenous target infusions of dexmedetomidine (0.5, 0.8, 1.2, 2.0, 3.2, 5.0, and 8.0 ng/ml; baroreflex testing only at 0.5 and 0.8 ng/ml). The initial dose of dexmedetomidine decreased catecholamines 45-76% and eliminated the norepinephrine increase that was seen during the cold pressor test. Catecholamine suppression persisted in subsequent infusions. The first two doses of dexmedetomidine increased sedation 38 and 65%, and lowered mean arterial pressure by 13%, but did not change central venous pressure or pulmonary artery pressure. Subsequent higher doses increased sedation, all pressures, and calculated vascular resistance, and resulted in significant decreases in heart rate, cardiac output, and stroke volume. Recall and recognition decreased at a dose of more than 0.7 ng/ml. The pain rating and mean arterial pressure increase to cold pressor test progressively diminished as the dexmedetomidine dose increased. The baroreflex heart rate slowing as a result of phenylephrine challenge was potentiated at both doses of dexmedetomidine. Respiratory variables were minimally changed during infusions, whereas acid-base was unchanged. Increasing concentrations of dexmedetomidine in humans resulted in progressive increases in sedation and analgesia, decreases in heart rate, cardiac output, and memory. A biphasic (low, then high) dose-response relation for mean arterial pressure, pulmonary arterial pressure, and vascular resistances, and an attenuation of the cold pressor response also were observed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation.

              Microsomes prepared from rabbit or pig aortas transformed endoperoxides (PGG2 or PGH2) to an unstable substance (PGX) that inhibited human platelet aggregation. PGX was 30 times more potent in this respect than prostaglandin E1. PGX contracted some gastrointestinal smooth muscle and relaxed certain isolated blood vessels. Prostaglandin endoperoxides cause platelet aggregation possibly through the generation by platelets of thromboxane A2. Generation of PGX by vessel walls could be the biochemical mechanism underlying their unique ability to resist platelet adhesion. A balance between formation of anti- and pro-aggregatory substances by enzymes could also contribute to the maintenance of the integrity of vascular endothelium and explain the mechanism of formation of intra-arterial thrombi in certain physiopathological conditions.
                Bookmark

                Author and article information

                Journal
                Journal of Cerebral Blood Flow & Metabolism
                J Cereb Blood Flow Metab
                SAGE Publications
                0271-678X
                1559-7016
                July 18 2018
                December 2018
                July 16 2018
                December 2018
                : 38
                : 12
                : 2192-2208
                Affiliations
                [1 ]Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
                Article
                10.1177/0271678X18789273
                6282215
                30009645
                83769392-4d3c-499f-ad46-cee145711322
                © 2018

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article