There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Traumatic brain injury (TBI)—the “silent epidemic”—contributes to worldwide death and disability more than any other traumatic insult. Yet, TBI incidence and distribution across regions and socioeconomic divides remain unknown. In an effort to promote advocacy, understanding, and targeted intervention, the authors sought to quantify the case burden of TBI across World Health Organization (WHO) regions and World Bank (WB) income groups. Open-source epidemiological data on road traffic injuries (RTIs) were used to model the incidence of TBI using literature-derived ratios. First, a systematic review on the proportion of RTIs resulting in TBI was conducted, and a meta-analysis of study-derived proportions was performed. Next, a separate systematic review identified primary source studies describing mechanisms of injury contributing to TBI, and an additional meta-analysis yielded a proportion of TBI that is secondary to the mechanism of RTI. Then, the incidence of RTI as published by the Global Burden of Disease Study 2015 was applied to these two ratios to generate the incidence and estimated case volume of TBI for each WHO region and WB income group. Relevant articles and registries were identified via systematic review; study quality was higher in the high-income countries (HICs) than in the low- and middle-income countries (LMICs). Sixty-nine million (95% CI 64–74 million) individuals worldwide are estimated to sustain a TBI each year. The proportion of TBIs resulting from road traffic collisions was greatest in Africa and Southeast Asia (both 56%) and lowest in North America (25%). The incidence of RTI was similar in Southeast Asia (1.5% of the population per year) and Europe (1.2%). The overall incidence of TBI per 100,000 people was greatest in North America (1299 cases, 95% CI 650–1947) and Europe (1012 cases, 95% CI 911–1113) and least in Africa (801 cases, 95% CI 732–871) and the Eastern Mediterranean (897 cases, 95% CI 771–1023). The LMICs experience nearly 3 times more cases of TBI proportionally than HICs. Sixty-nine million (95% CI 64–74 million) individuals are estimated to suffer TBI from all causes each year, with the Southeast Asian and Western Pacific regions experiencing the greatest overall burden of disease. Head injury following road traffic collision is more common in LMICs, and the proportion of TBIs secondary to road traffic collision is likewise greatest in these countries. Meanwhile, the estimated incidence of TBI is highest in regions with higher-quality data, specifically in North America and Europe.
This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.
Traumatic brain injury (TBI) is a leading cause of death and disability among persons in the United States. Each year, an estimated 1.5 million Americans sustain a TBI. As a result of these injuries, 50,000 people die, 230,000 people are hospitalized and survive, and an estimated 80,000-90,000 people experience the onset of long-term disability. Rates of TBI-related hospitalization have declined nearly 50% since 1980, a phenomenon that may be attributed, in part, to successes in injury prevention and also to changes in hospital admission practices that shift the care of persons with less severe TBI from inpatient to outpatient settings. The magnitude of TBI in the United States requires public health measures to prevent these injuries and to improve their consequences. State surveillance systems can provide reliable data on injury causes and risk factors, identify trends in TBI incidence, enable the development of cause-specific prevention strategies focused on populations at greatest risk, and monitor the effectiveness of such programs. State follow-up registries, built on surveillance systems, can provide more information regarding the frequency and nature of disabilities associated with TBI. This information can help states and communities to design, implement, and evaluate cost-effective programs for people living with TBI and for their families, addressing acute care, rehabilitation, and vocational, school, and community support.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.