Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Similarities and Differences Between Vestibular and Cochlear Systems – A Review of Clinical and Physiological Evidence

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evoked response to repeated brief stimuli, such as clicks or short tone bursts, is used for clinical evaluation of the function of both the auditory and vestibular systems. One auditory response is a neural potential — the Auditory Brainstem Response (ABR) — recorded by surface electrodes on the head. The clinical analogue for testing the otolithic response to abrupt sounds and vibration is the myogenic potential recorded from tensed muscles — the vestibular evoked myogenic potential (VEMP). VEMPs have provided clinicians with a long sought-after tool — a simple, clinically realistic indicator of the function of each of the 4 otolithic sensory regions. We review the basic neural evidence for VEMPs and discuss the similarities and differences between otolithic and cochlear receptors and afferents. VEMPs are probably initiated by sound or vibration selectively activating afferent neurons with irregular resting discharge originating from the unique type I receptors at a specialized region of the otolithic maculae (the striola). We review how changes in VEMP responses indicate the functional state of peripheral vestibular function and the likely transduction mechanisms allowing otolithic receptors and afferents to trigger such very short latency responses. In section “ELECTROPHYSIOLOGY” we show how cochlear and vestibular receptors and afferents have many similar electrophysiological characteristics [e.g., both generate microphonics, summating potentials, and compound action potentials (the vestibular evoked potential, VsEP)]. Recent electrophysiological evidence shows that the hydrodynamic changes in the labyrinth caused by increased fluid volume (endolymphatic hydrops), change the responses of utricular receptors and afferents in a way which mimics the changes in vestibular function attributed to endolymphatic hydrops in human patients. In section “MECHANICS OF OTOLITHS IN VEMPS TESTING” we show how the major VEMP results (latency and frequency response) follow from modeling the physical characteristics of the macula (dimensions, stiffness etc.). In particular, the structure and mechanical operation of the utricular macula explains the very fast response of the type I receptors and irregular afferents which is the very basis of VEMPs and these structural changes of the macula in Menière’s Disease (MD) predict the upward shift of VEMP tuning in these patients.

          Related collections

          Most cited references195

          • Record: found
          • Abstract: found
          • Article: not found

          Myogenic potentials generated by a click-evoked vestibulocollic reflex.

          Electromyograms (EMGs) were recorded from surface electrodes over the sternomastoid muscles and averaged in response to brief (0.1 ms) clicks played through headphones. In normal subjects, clicks 85 to 100 dB above our reference (45 dB SPL: close to perceptual threshold for normal subjects for such clicks) evoked reproducible changes in the averaged EMG beginning at a mean latency of 8.2 ms. The earliest potential change, a biphasic positive-negativity (p13-n23), occurred in all subjects and the response recorded from over the muscle on each side was predominantly generated by afferents originating from the ipsilateral ear. Later potentials (n34, p44), present in most but not all subjects, were generated bilaterally after unilateral ear stimulation. The amplitude of the averaged responses increased in direct proportion to the mean level of tonic muscle activation during the recording period. The p13-n23 response was abolished in patients who had undergone selective section of the vestibular nerve but was preserved in subjects with severe sensorineural hearing loss. It is proposed that the p13-n23 response is generated by activation of vestibular afferents, possibly those arising from the saccule, and transmitted via a rapidly conducting oligosynaptic pathway to anterior neck muscles. Conversely, the n34 and p44 potentials do not depend on the integrity of the vestibular nerve and probably originate from cochlear afferents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Afferent diversity and the organization of central vestibular pathways.

            This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron's discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could modify the operation of reflexes under varying behavioral circumstances; (3) Two-dimensional sensitivity can arise from the convergence onto secondary neurons of otolith inputs differing in their directional properties and response dynamics; (4) Calyx afferents have relatively low gains when compared with irregular dimorphic afferents. This could serve to expand the stimulus range over which the response of calyx afferents remains linear, while at the same time preserving the other features peculiar to irregular afferents. Among those features are phasic response dynamics and large responses to efferent activation; (5) Because of the convergence of several afferents onto each secondary neuron, information transmission to the latter depends on the gain of individual afferents, but not on their discharge regularity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kinetics of the receptor current in bullfrog saccular hair cells.

              The receptor current of hair cells from the bullfrog's sacculus was measured by voltage clamp recording across the isolated sensory epithelium. Several hundred hair cells were stimulated en masse by moving the overlying otolithic membrane with a piezoelectrically activated probe. As measured by optical recording of otolithic membrane motion, the step displacement stimuli reached their final amplitudes of up to 1 micrometer within 100 microseconds. The relationship between displacement and steady-state receptor current is an asymmetric, sigmoidal curve about 0.5 micrometer in extent. The time constant of the approach to steady state depends upon the magnitude of the hair bundle displacement and ranges from 100 to 500 microseconds at 4 degrees C; the time course is faster with larger displacements or at higher temperatures. Both the displacement-response curve and the kinetics of the response are changed by alterations in the Ca2+ concentration at the apical surface of the cells. The characteristics of the response are not consistent with simple models for the transduction process that involve enzymatic regulation of channel proteins or diffusible second messengers. Mechanical stimulation is instead posited to act directly by altering the free energy difference between the open and closed forms of the transduction channel, thereby inducing a redistribution between these states. The dependences of the response kinetics on displacement and on temperature suggest that the thermal interconversion between open and closed transduction channels is limited by an enthalpy of activation of about 12 kcal/mol.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                12 August 2021
                2021
                : 15
                : 695179
                Affiliations
                [1] 1Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney , NSW, Australia
                [2] 2Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, VA, United States
                [3] 3The Menière’s Research Laboratory, Sydney Medical School, The University of Sydney , Sydney, NSW, Australia
                [4] 4Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg , Halle, Germany
                [5] 5School of Pharmacy and Biomedical Sciences, Curtin University , Bentley, WA, Australia
                Author notes

                Edited by: Soroush G. Sadeghi, University at Buffalo, United States

                Reviewed by: Robert Burkard, University at Buffalo, United States; Devin McCaslin, University of Michigan, United States; Herman Kingma, Maastricht University, Netherlands

                *Correspondence: Ian S. Curthoys, ian.curthoys@ 123456sydney.edu.au

                This article was submitted to Perception Science, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2021.695179
                8397526
                34456671
                83527533-21a4-424c-b505-7b5066c51aec
                Copyright © 2021 Curthoys, Grant, Pastras, Fröhlich and Brown.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 April 2021
                : 12 July 2021
                Page count
                Figures: 15, Tables: 0, Equations: 12, References: 196, Pages: 28, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                vestibular,otolith,labyrinth,vemp,semicircular canal,saccular,utricular
                Neurosciences
                vestibular, otolith, labyrinth, vemp, semicircular canal, saccular, utricular

                Comments

                Comment on this article