42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reciprocal Regulation Between Indoleamine 2,3-Dioxigenase 1 and Notch1 Involved in Radiation Response of Cervical Cancer Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cervical cancer is the fourth most common cancer in women around the world. Cancer stem cells (CSCs) are responsible for cancer initiation, as well as resistance to radiation therapy, and are considered as the effective target of cancer therapy. Indoleamine 2,3-dioxygenase 1 (IDO1) mediates tryptophan metabolism and T cell suppression, but the immune-independent function of IDO1 in cancer behavior is not fully understood. Using tumorsphere cultivation for enriched CSCs, we firstly found that IDO1 was increased in HeLa and SiHa cervical cancer cells and in these two cell lines after radiation treatment. The radiosensitivity of HeLa and SiHa tumorsphere cells was increased after the inhibition of IDO1 through RNA interference or by the treatment of INCB-024360, an IDO1 inhibitor. With the treatment of kynurenine, the first breakdown product of the IDO1-mediated tryptophan metabolism, the radiosensitivity of HeLa and SiHa cells decreased. The inhibition of Notch1 by shRNA downregulated IDO1 expression in cervical CSCs and the binding of the intracellular domain of Notch (NICD) on the IDO1 promoter was reduced by Ro-4929097, a γ-secretase inhibitor. Moreover, the knockdown of IDO1 also decreased NICD expression in cervical CSCs, which was correlated with the reduced binding of aryl hydrocarbon receptor nuclear translocator to Notch1 promoter. In vivo treatment of INCB-0234360 sensitized SiHa xenograft tumors to radiation treatment in nude mice through increased DNA damage. Furthermore, kynurenine increased the tumorsphere formation capability and the expression of cancer stemness genes including Oct4 and Sox2. Our data provide a reciprocal regulation mechanism between IDO1 and Notch1 expression in cervical cancer cells and suggest that the IDO1 inhibitors may potentially be used as radiosensitizers.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase.

          Indoleamine 2,3 dioxygenase (IDO) catabolizes the amino acid tryptophan. IDO-expressing immunoregulatory dendritic cells (DCs) have been implicated in settings including tumors, autoimmunity, and transplant tolerance. However, the downstream molecular mechanisms by which IDO functions to regulate T cell responses remain unknown. We now show that IDO-expressing plasmacytoid DCs activate the GCN2 kinase pathway in responding T cells. GCN2 is a stress-response kinase that is activated by elevations in uncharged tRNA. T cells with a targeted disruption of GCN2 were not susceptible to IDO-mediated suppression of proliferation in vitro. In vivo, proliferation of GCN2-knockout T cells was not inhibited by IDO-expressing DCs from tumor-draining lymph nodes. IDO induced profound anergy in responding wild-type T cells, but GCN2-knockout cells were refractory to IDO-induced anergy. We hypothesize that GCN2 acts as a molecular sensor in T cells, allowing them to detect and respond to conditions created by IDO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch promotes radioresistance of glioma stem cells.

            Radiotherapy represents the most effective nonsurgical treatments for gliomas. However, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we show that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) renders the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhance radiation-induced cell death and impair clonogenic survival of glioma stem cells but not non-stem glioma cells. Expression of the constitutively active intracellular domains of Notch1 or Notch2 protect glioma stem cells against radiation. Notch inhibition with GSIs does not alter the DNA damage response of glioma stem cells after radiation but rather reduces Akt activity and Mcl-1 levels. Finally, knockdown of Notch1 or Notch2 sensitizes glioma stem cells to radiation and impairs xenograft tumor formation. Taken together, our results suggest a critical role of Notch signaling to regulate radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction.

              The tool most commonly used for quantitative predictions of dose/fractionation dependencies in radiotherapy is the mechanistically based linear-quadratic (LQ) model. The LQ formalism is now almost universally used for calculating radiotherapeutic isoeffect doses for different fractionation/protraction schemes. In summary, the LQ model has the following useful properties for predicting isoeffect doses: (1) it is a mechanistic, biologically based model; (2) it has sufficiently few parameters to be practical; (3) most other mechanistic models of cell killing predict the same fractionation dependencies as does the LQ model; (4) it has well-documented predictive properties for fractionation/dose-rate effects in the laboratory; and (5) it is reasonably well validated, experimentally and theoretically, up to about 10 Gy/fraction and would be reasonable for use up to about 18 Gy per fraction. To date, there is no evidence of problems when the LQ model has been applied in the clinic.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                12 June 2020
                June 2020
                : 12
                : 6
                : 1547
                Affiliations
                [1 ]Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; huiying716@ 123456gmail.com (H.-Y.L.); yijulee@ 123456csmu.edu.tw (Y.-J.L.)
                [2 ]Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; lee.yuehchun@ 123456gmail.com (Y.-C.L.); showtear@ 123456gmail.com (S.-T.L.)
                [3 ]School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
                [4 ]Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; huilin117@ 123456gmail.com (H.-L.W.); leatw170@ 123456yahoo.com.tw (Y.-I.C.); chienpengju@ 123456gmail.com (P.-J.C.)
                [5 ]Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
                Author notes
                [* ]Correspondence: changww@ 123456csmu.edu.tw ; Tel.: +886-4-24730022 (ext. 12305)
                Author information
                https://orcid.org/0000-0002-9713-9708
                https://orcid.org/0000-0003-2283-1377
                Article
                cancers-12-01547
                10.3390/cancers12061547
                7352771
                32545442
                83513a9a-cafe-4199-8d3a-34a291f0e49a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 May 2020
                : 09 June 2020
                Categories
                Article

                ido1,notch1,radiation,cervical cancer,cancer stem cells
                ido1, notch1, radiation, cervical cancer, cancer stem cells

                Comments

                Comment on this article