98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD.

          Methodology/Principal Findings

          The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4 +FoxP3 + regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4 +FoxP3 + regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer's patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway.

          Conclusion/Significance

          Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

          The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines.

            Oral administration of DSS has been reported to induce an acute and chronic colitis in mice. The aim of our study was to evaluate if the chronic phase of DSS-induced colitis was characterized by a Th1/Th2 response and how this would relate to mucosal regeneration. Swiss Webster mice were fed 5% DSS in their drinking water for 7 days, followed by 2-5 weeks consumption of water. Control mice received only water. The animals were killed at 3 and 6 weeks after induction. Their colons were isolated for histology and immunohistochemistry, using specific MoAbs for T and B cells, macrophages, interferon-gamma (IFN-gamma), IL-4 and IL-5. Colons were scored for inflammation, damage and regeneration. Two weeks after stopping DSS the colonic epithelium had only partially healed. Total colitis scores were still increased, especially in the distal colon, which was due to more inflammation, damage and less regeneration. In areas of incomplete colonic healing the basal parts of the lamina propria contained macrophages and CD4+ T cells. These CD4+ T cells showed a focal increase of IFN-gamma and IL-4 staining compared with control animals. These findings were still observed 5 weeks after stopping DSS in some mice, albeit less extensive. Chronic DSS-induced colitis is characterized by focal epithelial regeneration and a Th1 as well as Th2 cytokine profile. We postulate that chronic immune activation mediated by both populations of Th cells can interfere with colonic healing and can play a role in the pathogenesis of chronic colitis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens.

              How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism-host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host-probiotic interactions can benefit from well-documented host-microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                22 November 2011
                : 6
                : 11
                : e27961
                Affiliations
                [1 ]Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
                [2 ]Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
                [3 ]Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
                [4 ]Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
                French National Centre for Scientific Research, France
                Author notes

                Conceived and designed the experiments: ZZ MK JR HT-H. Performed the experiments: ZZ MK KK PR JM JK MH DS TH JR. Analyzed the data: ZZ MK KK PR JM JK JR HT-H. Contributed reagents/materials/analysis tools: ZZ MK JK JR HT-H. Wrote the paper: ZZ MK KK PR JM JK MH DS TH JR HT-H.

                Article
                PONE-D-11-14792
                10.1371/journal.pone.0027961
                3222668
                22132181
                833470af-918d-465a-a698-107b751e81f6
                Zakostelska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 July 2011
                : 28 October 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Digestive System
                Digestive Physiology
                Digestive Functions
                Digestive Regulation
                Immunology
                Immune Cells
                Immune Response
                Microbiology
                Immunity
                Adaptive Immunity
                Inflammation
                Innate Immunity
                Bacteriology
                Medical Microbiology
                Microbial Physiology
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Clinical Research Design
                Animal Models of Disease

                Uncategorized
                Uncategorized

                Comments

                Comment on this article