100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin A in Reproduction and Development

      review-article
      1 , 2 , * , 1
      Nutrients
      MDPI
      retinoic acid, vitamin A deficiency, embryonic

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The requirement for vitamin A in reproduction was first recognized in the early 1900’s, and its importance in the eyes of developing embryos was realized shortly after. A greater understanding of the large number of developmental processes that require vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from genetic studies in mice. It is now generally believed that all- trans retinoic acid (RA) is the form of vitamin A that supports both male and female reproduction as well as embryonic development. This conclusion is based on the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency induced either by nutritional or genetic means with RA, and the ability to recapitulate the majority of embryonic defects in retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 enzymes in determining what tissues have access to RA has emerged as a key regulatory mechanism, and helps to explain why exogenous RA can rescue many vitamin A deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or supported on limiting quantities of RA early in organogenesis, embryos form but show a collection of defects called the vitamin A deficiency syndrome or late vitamin A deficiency. Vitamin A is also essential for the maintenance of the male genital tract and spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism to initiate meiosis in the female gonad during embryogenesis, and in the male gonad postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin A-dependent pathways upon which these processes depend.

          Related collections

          Most cited references280

          • Record: found
          • Abstract: found
          • Article: not found

          A decade of molecular biology of retinoic acid receptors.

          P Chambon (1996)
          Retinoids play an important role in development, differentiation, and homeostasis. The discovery of retinoid receptors belonging to the superfamily of nuclear ligand-activated transcriptional regulators has revolutionized our molecular understanding as to how these structurally simple molecules exert their pleiotropic effects. Diversity in the control of gene expression by retinoid signals is generated through complexity at different levels of the signaling pathway. A major source of diversity originates from the existence of two families of retinoid acid (RA) receptors (R), the RAR isotypes (alpha, beta, and gamma) and the three RXR isotypes (alpha, beta, and gamma), and their numerous isoforms, which bind as RXR/RAR heterodimers to the polymorphic cis-acting response elements of RA target genes. The possibility of cross-modulation (cross-talk) with cell-surface receptors signaling pathways, as well as the finding that RARs and RXRs interact with multiple putative coactivators and/or corepressors, generates additional levels of complexity for the array of combinatorial effects that underlie the pleiotropic effects of retinoids. This review focuses on recent developments, particularly in the area of structure-function relationships.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinoid signaling determines germ cell fate in mice.

            Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and initiate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinoic acid regulates sex-specific timing of meiotic initiation in mice.

              In mammals, meiosis is initiated at different time points in males and females, but the mechanism underlying this difference is unknown. Female germ cells begin meiosis during embryogenesis. In males, embryonic germ cells undergo G0/G1 mitotic cell cycle arrest, and meiosis begins after birth. In mice, the Stimulated by Retinoic Acid Gene 8 (Stra8) has been found to be required for the transition into meiosis in both female and male germ cells. Stra8 is expressed in embryonic ovaries just before meiotic initiation, whereas its expression in testes is first detected after birth. Here we examine the mechanism underlying the sex-specific timing of Stra8 expression and meiotic initiation in mice. Our work shows that signaling by retinoic acid (RA), an active derivative of vitamin A, is required for Stra8 expression and thereby meiotic initiation in embryonic ovaries. We also discovered that RA is sufficient to induce Stra8 expression in embryonic testes and in vitamin A-deficient adult testes in vivo. Finally, our results show that cytochrome p450 (CYP)-mediated RA metabolism prevents premature Stra8 expression in embryonic testes. Treatment with an inhibitor specific to RA-metabolizing enzymes indicates that a cytochrome p450 from the 26 family (CYP26) is responsible for delaying Stra8 expression in embryonic testes. Sex-specific regulation of RA signaling thus plays an essential role in meiotic initiation in embryonic ovaries and precludes its occurrence in embryonic testes. Because RA signaling regulates Stra8 expression in both embryonic ovaries and adult testes, this portion of the meiotic initiation pathway may be identical in both sexes.
                Bookmark

                Author and article information

                Journal
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                29 March 2011
                April 2011
                : 3
                : 4
                : 385-428
                Affiliations
                [1 ] Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Email: dcknutson@ 123456wisc.edu
                [2 ] School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: dame@ 123456biochem.wisc.edu ; Tel.: +1-608-262-3450; Fax: +1-608-262-7122.
                Article
                nutrients-03-00385
                10.3390/nu3040385
                3257687
                22254103
                8305978f-96cc-4402-a06e-9eae600eda1c
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 November 2010
                : 28 February 2011
                : 22 March 2011
                Categories
                Review

                Nutrition & Dietetics
                vitamin a deficiency,embryonic, retinoic acid
                Nutrition & Dietetics
                vitamin a deficiency, embryonic, retinoic acid

                Comments

                Comment on this article