60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.

          Related collections

          Most cited references230

          • Record: found
          • Abstract: found
          • Article: not found

          Interneurons of the neocortical inhibitory system.

          Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

            The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormal neural oscillations and synchrony in schizophrenia.

              Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
                Bookmark

                Author and article information

                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                11 March 2014
                2014
                : 8
                : 17
                Affiliations
                [1] 1Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
                [2] 2McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
                [3] 3Max Planck Institute for Brain Research, Frankfurt am Main Germany
                Author notes

                Edited by: Evelyn K. Lambe, University of Toronto, Canada

                Reviewed by: Vinay V. Parikh, Temple University, USA; Craig Edward Brown, University of Victoria, Canada

                *Correspondence: Huibert D. Mansvelder, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit, de Boelelaan 1085, 1081 HV, Amsterdam, Netherlands e-mail: h.d.mansvelder@ 123456vu.nl

                This article was submitted to the journal Frontiers in Neural Circuits.

                Article
                10.3389/fncir.2014.00017
                3949318
                24653678
                82eabc75-2d9a-4dda-9aa9-4510c3e0aa73
                Copyright © 2014 Bloem, Poorthuis and Mansvelder.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 December 2013
                : 20 February 2014
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 259, Pages: 16, Words: 17020
                Categories
                Neuroscience
                Review Article

                Neurosciences
                acetylcholine,nicotinic receptors,medial prefrontal cortex,attention,neurophysiology
                Neurosciences
                acetylcholine, nicotinic receptors, medial prefrontal cortex, attention, neurophysiology

                Comments

                Comment on this article