Insulin signaling is tightly controlled by tyrosine dephosphorylation of the insulin receptor through protein-tyrosine-phosphatases (PTPs). DEP-1 is a PTP dephosphorylating tyrosine residues in a variety of receptor tyrosine kinases. Here, we analyzed whether DEP-1 activity is differentially regulated in liver, skeletal muscle and adipose tissue under high-fat diet (HFD), examined the role of DEP-1 in insulin resistance in vivo, and its function in insulin signaling.
Mice were fed an HFD for 10 weeks to induce obesity-associated insulin resistance. Thereafter, HFD mice were subjected to systemic administration of specific antisense oligonucleotides (ASOs), highly accumulating in hepatic tissue, against DEP-1 or control ASOs. Targeting DEP-1 led to improvement of insulin sensitivity, reduced basal glucose level, and significant reduction of body weight. This was accompanied by lower insulin and leptin serum levels. Suppression of DEP-1 in vivo also induced hyperphosphorylation in the insulin signaling cascade of the liver. Moreover, DEP-1 physically associated with the insulin receptor in situ, and recombinant DEP-1 dephosphorylated the insulin receptor in vitro.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.