1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synechococcus elongatus PCC 7942 as a Platform for Bioproduction of Omega-3 Fatty Acids

      , , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-linolenic acid and stearidonic acid are precursors of omega-3 polyunsaturated fatty acids, essential nutrients in the human diet. The ability of cyanobacteria to directly convert atmospheric carbon dioxide into bio-based compounds makes them promising microbial chassis to sustainably produce omega-3 fatty acids. However, their potential in this area remains unexploited, mainly due to important gaps in our knowledge of fatty acid synthesis pathways. To gain insight into the cyanobacterial fatty acid biosynthesis pathways, we analyzed two enzymes involved in the elongation cycle, FabG and FabZ, in Synechococcus elongatus PCC 7942. Overexpression of these two enzymes led to an increase in C18 fatty acids, key intermediates in omega-3 fatty acid production. Nevertheless, coexpression of these enzymes with desaturases DesA and DesB from Synechococcus sp. PCC 7002 did not improve alpha-linolenic acid production, possibly due to their limited role in fatty acid synthesis. In any case, efficient production of stearidonic acid was not achieved by cloning DesD from Synechocystis sp. PCC 6803 in combination with the aforementioned DesA and DesB, reaching maximum production at 48 h post induction. According to current knowledge, this is the first report demonstrating that S. elongatus PCC 7942 can be used as an autotrophic chassis to produce stearidonic acid.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits

            Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.

              Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                June 2022
                May 29 2022
                : 12
                : 6
                : 810
                Article
                10.3390/life12060810
                35743841
                82b5f511-df37-418f-9a08-f8c35ef6aa58
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article