13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hot air drying has proven to be an efficient method to preserve specific edible plant materials with medicinal properties. This is a process involving chemical, physical, and biological changes in plant matrices. Understanding these processes will lead to an improvement in the yields of bioactive compounds. This study aims to optimize the drying process of two species’ fruits used in folk medicine, Berberis vulgaris and Crataegus monogyna. The optimized extracts’ antioxidant capacity was assessed using various assays, with the barberry extract showing very good activity (50.85, 30.98, and 302.45 mg TE/g dw for DPPH, TEAC, and FRAP assays, respectively). Both species exerted good fungal α-glucosidase inhibitory activity (IC50 = 0.34 and 0.56 mg/mL, respectively) but no activity on mammalian α-glucosidase. Additionally, this study identified and quantified the main bioactive compounds. The results presented herein are a breakthrough in industrializing this drying process. Additional studies are necessary to mechanistically understand the drying process involved in these plant materials.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            α-glucosidase inhibitors from plants: A natural approach to treat diabetes

            Diabetes is a common metabolic disease characterized by abnormally high plasma glucose levels, leading to major complications, such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective managements of diabetes mellitus, in particular, non–insulin-dependent diabetes mellitus (NIDDM) to decrease postprandial hyperglycemia, is to retard the absorption of glucose by inhibition of carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase, in the digestive organs. α-Glucosidase is the key enzyme catalyzing the final step in the digestive process of carbohydrates. Hence, α-glucosidase inhibitors can retard the liberation of d-glucose from dietary complex carbohydrates and delay glucose absorption, resulting in reduced postprandial plasma glucose levels and suppression of postprandial hyperglycemia. In recent years, many efforts have been made to identify effective α-glucosidase inhibitors from natural sources in order to develop a physiologic functional food or lead compounds for use against diabetes. Many α-glucosidase inhibitors that are phytoconstituents, such as flavonoids, alkaloids, terpenoids,anthocyanins, glycosides, phenolic compounds, and so on, have been isolated from plants. In the present review, we focus on the constituents isolated from different plants having α-glucosidase inhibitory potency along with IC50 values.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                October 2021
                October 07 2021
                : 10
                : 10
                : 1579
                Article
                10.3390/antiox10101579
                34679714
                82b11456-6a74-4d8d-b885-be70f6ed76e3
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article