15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Old cells, new tricks: chromatin structure in senescence

      review-article
      ,
      Mammalian Genome
      Springer US

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular senescence is a stable form of cell cycle arrest with roles in many pathophysiological processes including development, tissue repair, cancer, and aging. Senescence does not represent a single entity but rather a heterogeneous phenotype that depends on the trigger and cell type of origin. Such heterogeneous features include alterations to chromatin structure and epigenetic states. New technologies are beginning to unravel the distinct mechanisms regulating chromatin structure during senescence. Here, we describe the multiple levels of chromatin organization associated with senescence: global and focal, linear, and higher order.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.

          Oncogenic ras can transform most immortal rodent cells to a tumorigenic state. However, transformation of primary cells by ras requires either a cooperating oncogene or the inactivation of tumor suppressors such as p53 or p16. Here we show that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest. The arrest induced by ras is accompanied by accumulation of p53 and p16, and is phenotypically indistinguishable from cellular senescence. Inactivation of either p53 or p16 prevents ras-induced arrest in rodent cells, and E1A achieves a similar effect in human cells. These observations suggest that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an oncogenic stimulus. Negation of ras-induced senescence may be relevant during multistep tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cellular senescence and its effector programs

            Cellular senescence can be described as a state of stable cell cycle arrest in response to diverse stresses. Senescence is a collective phenotype of multiple effectors, and their intensity and combination can be different depending on triggers and cell types. In this review, Salama et al. summarize effector mechanisms and highlight some key components of the collective phenotype of senescence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

              Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.
                Bookmark

                Author and article information

                Contributors
                aled.parry@cruk.cam.ac.uk
                masashi.narita@cruk.cam.ac.uk
                Journal
                Mamm Genome
                Mamm. Genome
                Mammalian Genome
                Springer US (New York )
                0938-8990
                1432-1777
                28 March 2016
                28 March 2016
                2016
                : 27
                : 320-331
                Affiliations
                Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE UK
                Article
                9628
                10.1007/s00335-016-9628-9
                4935760
                27021489
                828a2882-5d38-42f2-8758-32016d50eb90
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 January 2016
                : 16 March 2016
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media New York 2016

                Genetics
                Genetics

                Comments

                Comment on this article