0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antitumor imidazotetrazines. 14. Synthesis and antitumor activity of 6- and 8-substituted imidazo[5,1-d]-1,2,3,5-tetrazinones and 8-substituted pyrazolo[5,1-d]-1,2,3,5-tetrazinones.

      Journal of Medicinal Chemistry
      Animals, Antineoplastic Agents, chemical synthesis, Drug Evaluation, Preclinical, Heterocyclic Compounds, therapeutic use, Imidazoles, Indicators and Reagents, Leukemia L1210, drug therapy, Lymphoma, Magnetic Resonance Spectroscopy, Mice, Mice, Inbred Strains, Pyrazoles, Structure-Activity Relationship

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The systematic variation of the potent antitumor agent mitozolomide (1) is extended to cover alteration of substituents at positions 6 and 8 and to change the imidazo[5,1-d]-1,2,3,5-tetrazinone (1) skeleton to the isomeric pyrazolo-[5,1-d]-1,2,3,5-tetrazinone (17) skeleton. The series of eight 6-alkyl and 6-aralkyl derivatives of 1 showed optimal antitumor activity when the group was small or linear, but activity diminished as size and branching of this substituent increased. This may reflect altered transport characteristics, or failure of the enlarged derivatives to fit a binding site, or possibly a reduced tendency for the derivatives having bulky groups at position 6 to hydrolytically generate the putatively active triazenes (21). Testing of 14 derivatives of 1 differently substituted at position 8 revealed a complex structure-activity relationship, with good antitumor activity obtained for carbamoyl and sulfamoyl groups bearing small substituents. The 8-methylsulfonyl compound had noteworthy activity, but the 8-cyano, 8-nitro, and 8-phenyl derivatives were devoid of useful antitumor activity in these tests. From the limited number of pyrazolotetrazinones (17) reported here, it is suggested that the same conclusions as regards activity also hold true for this ring system.

          Related collections

          Author and article information

          Comments

          Comment on this article