0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stable predictions for health related anticausal prediction tasks affected by selection biases: the need to deconfound the test set features

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In health related machine learning applications, the training data often corresponds to a non-representative sample from the target populations where the learners will be deployed. In anticausal prediction tasks, selection biases often make the associations between confounders and the outcome variable unstable across different target environments. As a consequence, the predictions from confounded learners are often unstable, and might fail to generalize in shifted test environments. Stable prediction approaches aim to solve this problem by producing predictions that are stable across unknown test environments. These approaches, however, are sometimes applied to the training data alone with the hope that training an unconfounded model will be enough to generate stable predictions in shifted test sets. Here, we show that this is insufficient, and that improved stability can be achieved by deconfounding the test set features as well. We illustrate these observations using both synthetic data and real world data from a mobile health study.

          Related collections

          Author and article information

          Journal
          08 November 2020
          Article
          2011.04128
          827a4642-5160-4ebb-9cb7-03cdb8944a5b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Machine Learning for Health (ML4H) at NeurIPS 2020 - Extended Abstract. This workshop paper draws some material from arXiv:2001.03998 and arXiv:2004.09466
          stat.ML cs.LG

          Machine learning,Artificial intelligence
          Machine learning, Artificial intelligence

          Comments

          Comment on this article