8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar degeneration: pathology versus phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sami et al. identify characteristic neurophysiological signatures of five neurodegenerative diseases, including two variants of Alzheimer’s disease and three forms of frontotemporal lobar degeneration. Disorders that share a common underlying pathology have a similar spectral signature of altered connectivity, regardless of phenotype.

          Abstract

          The disruption of brain networks is characteristic of neurodegenerative dementias. However, it is controversial whether changes in connectivity reflect only the functional anatomy of disease, with selective vulnerability of brain networks, or the specific neurophysiological consequences of different neuropathologies within brain networks. We proposed that the oscillatory dynamics of cortical circuits reflect the tuning of local neural interactions, such that different pathologies are selective in their impact on the frequency spectrum of oscillations, whereas clinical syndromes reflect the anatomical distribution of pathology and physiological change. To test this hypothesis, we used magnetoencephalography from five patient groups, representing dissociated pathological subtypes and distributions across frontal, parietal and temporal lobes: amnestic Alzheimer’s disease, posterior cortical atrophy, and three syndromes associated with frontotemporal lobar degeneration. We measured effective connectivity with graph theory-based measures of local efficiency, using partial directed coherence between sensors. As expected, each disease caused large-scale changes of neurophysiological brain networks, with reductions in local efficiency compared to controls. Critically however, the frequency range of altered connectivity was consistent across clinical syndromes that shared a likely underlying pathology, whilst the localization of changes differed between clinical syndromes. Multivariate pattern analysis of the frequency-specific topographies of local efficiency separated the disorders from each other and from controls (accuracy 62% to 100%, according to the groups’ differences in likely pathology and clinical syndrome). The data indicate that magnetoencephalography has the potential to reveal specific changes in neurophysiology resulting from neurodegenerative disease. Our findings confirm that while clinical syndromes have characteristic anatomical patterns of abnormal connectivity that may be identified with other methods like structural brain imaging, the different mechanisms of neurodegeneration also cause characteristic spectral signatures of physiological coupling that are not accessible with structural imaging nor confounded by the neurovascular signalling of functional MRI. We suggest that these spectral characteristics of altered connectivity are the result of differential disruption of neuronal microstructure and synaptic physiology by Alzheimer’s disease versus frontotemporal lobar degeneration.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria.

          PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.

            Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, novel methods of time series analysis have been developed for the examination of task- and performance-related oscillatory activity and its synchronization. Studies employing these advanced techniques revealed that synchronization of oscillatory responses in the beta- and gamma-band is involved in a variety of cognitive functions, such as perceptual grouping, attention-dependent stimulus selection, routing of signals across distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness. Here, we review evidence that certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer's disease, and Parkinson's are associated with abnormal neural synchronization. The data suggest close correlations between abnormalities in neuronal synchronization and cognitive dysfunctions, emphasizing the importance of temporal coordination. Thus, focused search for abnormalities in temporal patterning may be of considerable clinical relevance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The θ-γ neural code.

              Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                August 2018
                09 July 2018
                09 July 2018
                : 141
                : 8
                : 2500-2510
                Affiliations
                [1 ]Department of Clinical Neurosciences, University of Cambridge, UK
                [2 ]Neuroscience Center, University of Helsinki, Finland
                [3 ]Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
                Author notes
                Correspondence to: James B. Rowe University of Cambridge, Department of Clinical Neurosciences, Herchel Smith Building, Forvie Site, Robinson Way, Addenbrooke’s Hospital, Cambridge, CB2 0SZ, UK E-mail: james.rowe@ 123456mrc-cbu.cam.ac.uk

                Nitin Williams and Laura E. Hughes authors contributed equally to this work.

                Article
                awy180
                10.1093/brain/awy180
                6061803
                30060017
                826f0b03-914f-4220-a911-ec61d5d7224f
                © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2017
                : 27 April 2018
                : 17 May 2018
                Page count
                Pages: 11
                Funding
                Funded by: Wellcome Trust 10.13039/100004440
                Award ID: 103838
                Funded by: Medical Research Council 10.13039/501100000265
                Award ID: MC-A060‐5PQ30
                Award ID: MC-A060‐0046
                Award ID: RG62761
                Funded by: Alzheimer’s Research UK 10.13039/501100002283
                Funded by: NIHR 10.13039/100006662
                Funded by: Cambridge Biomedical Research Centre
                Funded by: Cambridge Brain Bank
                Funded by: Association of British Neurologists
                Funded by: James S. McDonnell Foundation Understanding Human Cognition Scholar Award
                Categories
                Original Articles

                Neurosciences
                effective connectivity,magnetoencephalography,alzheimer’s disease,frontotemporal dementia,dementia

                Comments

                Comment on this article