5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Climatology and Variability of Warm and Cold Fronts over North America from 1979 to 2018

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes the development and analysis of an objective climatology of warm and cold fronts over North America from 1979 to 2018. Fronts are detected by a convolutional neural network (CNN), trained to emulate fronts drawn by human meteorologists. Predictors for the CNN are surface and 850-hPa fields of temperature, specific humidity, and vector wind from the ERA5 reanalysis. Gridded probabilities from the CNN are converted to 2D frontal regions, which are used to create the climatology. Overall, warm and cold fronts are most common in the Pacific and Atlantic cyclone tracks and the lee of the Rockies. In contrast with prior research, we find that the activity of warm and cold fronts is significantly modulated by the phase and intensity of El Niño–Southern Oscillation. The influence of El Niño is significant for winter warm fronts, winter cold fronts, and spring cold fronts, with activity decreasing over the continental United States and shifting northward with the Pacific and Atlantic cyclone tracks. Long-term trends are generally not significant, although we find a poleward shift in frontal activity during the winter and spring, consistent with prior research. We also identify a number of regional patterns, such as a significant long-term increase in warm fronts in the eastern tropical Pacific Ocean, which are characterized almost entirely by moisture gradients rather than temperature gradients.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          Matplotlib: A 2D Graphics Environment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nonparametric Tests Against Trend

            Henry Mann (1945)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mastering the game of Go with deep neural networks and tree search.

              The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
                Bookmark

                Author and article information

                Journal
                Journal of Climate
                American Meteorological Society
                0894-8755
                1520-0442
                August 01 2020
                August 01 2020
                : 33
                : 15
                : 6531-6554
                Affiliations
                [1 ]School of Meteorology, University of Oklahoma, Norman, Oklahoma
                [2 ]Department of Earth and Atmospheric Sciences, Central Michigan University, Mt. Pleasant, Michigan
                [3 ]School of Computer Science, University of Oklahoma, Norman, Oklahoma
                Article
                10.1175/JCLI-D-19-0680.1
                825f5315-e719-40df-b491-8082c3187990
                © 2020
                History

                Comments

                Comment on this article