20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Independent roles for IL-2 and GATA-3 in stimulating naive CD4 + T cells to generate a Th2-inducing cytokine environment

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cell receptor (TCR) signaling plays an important role in early interleukin (IL)-4 production by naive CD4 + T cells. This “antigen-stimulated” early IL-4 is sufficient for in vitro Th2 differentiation. Here, we provide evidence that early IL-4 production by naive CD4 + T cells stimulated with cognate peptide requires TCR-induced early GATA-3 expression and IL-2 receptor signaling, both of which are controlled by the degree of activation of extracellular signal-regulated kinase (ERK). Stimulation of naive CD4 + T cells from TCR transgenic mice with low concentrations of peptide-induced IL-2–dependent STAT5 phosphorylation, IL-4-independent early GATA-3 expression, and IL-4 production. Neutralization of IL-2 abolished early IL-4 production without affecting early GATA-3 expression. In addition, naive CD4 + T cells from GATA-3 conditional KO mice failed to produce early IL-4 in response to TCR/CD28 stimulation. Stimulation with high concentrations of peptide abrogated early GATA-3 expression and IL-2–dependent STAT5 phosphorylation, and resulted in the failure to produce early IL-4. This high concentration–mediated suppression of early IL-4 production was reversed by blockade of the ERK pathway. A MEK inhibition rescued early GATA-3 expression and responsiveness to IL-2; these cells were now capable of producing early IL-4 and undergoing subsequent Th2 differentiation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival.

          The role of DNA methylation and of the maintenance DNA methyltransferase Dnmt1 in the epigenetic regulation of developmental stage- and cell lineage-specific gene expression in vivo is uncertain. This is addressed here through the generation of mice in which Dnmt1 was inactivated by Cre/loxP-mediated deletion at sequential stages of T cell development. Deletion of Dnmt1 in early double-negative thymocytes led to impaired survival of TCRalphabeta(+) cells and the generation of atypical CD8(+)TCRgammadelta(+) cells. Deletion of Dnmt1 in double-positive thymocytes impaired activation-induced proliferation but differentially enhanced cytokine mRNA expression by naive peripheral T cells. We conclude that Dnmt1 and DNA methylation are required for the proper expression of certain genes that define fate and determine function in T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen

            Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches.

              T helper lymphocytes can be divided into two distinct subsets of effector cells based on their functional capabilities and the profile of cytokines they produce. The Th1 subset of CD4+ T cells secretes cytokines usually associated with inflammation, such as IFN-gamma and TNF and induces cell-mediated immune responses. The Th2 subset produces cytokines such as IL-4 and IL-5 that help B cells to proliferate and differentiate and is associated with humoral-type immune responses. The selective differentiation of either subset is established during priming and can be significantly influenced by a variety of factors. One of these factors, the cytokine environment, has been put forward as the major variable influencing Th development and is already well reviewed by others. Instead, in the current review, we focus on some of the alternative approaches for skewing Th1/Th2 responses. Specifically, we discuss the effects on Th priming of (a) using altered peptide ligands as antigens, (b) varying the dose of antigen, and (c) altering costimulatory signals. The potential importance of each of these variables to influence immune responses to pathogens in vivo is discussed throughout.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 September 2005
                : 202
                : 6
                : 793-804
                Affiliations
                Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
                Author notes

                CORRESPONDENCE William E. Paul: wpaul@ 123456niaid.nih.gov

                Article
                20051304
                10.1084/jem.20051304
                2212937
                16172258
                820876a2-5dda-47ae-8d91-cb03dbfabcd4
                Copyright © 2005, The Rockefeller University Press
                History
                : 28 June 2005
                : 10 August 2005
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article