0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A national isotope survey to define the sources of nitrate contamination in New Zealand freshwaters

      , , ,
      Journal of Hydrology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results.

          To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented. Published in 2011 by John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater.

            We present a novel method for nitrogen and oxygen natural isotopic abundance analysis of nitrate and nitrite of seawater and freshwater at environmental concentrations. The method involves the reduction of nitrate to nitrite using spongy cadmium with further reduction to nitrous oxide using sodium azide in an acetic acid buffer. For separate nitrite analysis, the cadmium reduction step is simply bypassed. Nitrous oxide is purged from the water sample and trapped cryogenically using an automated system with subsequent release into a gas chromatography column. The isolated nitrous oxide is then analyzed on a continuous flow isotope ratio mass spectrometer via an open split. This paper describes the basic protocol and reaction conditions required to obtain reproducible natural abundance level nitrogen and oxygen isotopic ratios from nitrate, nitrite, or both, and the results obtained to support these conclusions. A standard deviation less than 0.2 per thousand for nitrogen and 0.5 per thousand for oxygen was found for nitrate samples ranging in concentration from 40 to 0.5 microM (better for nitrite), with a blank of 2 nmol for 50-mL samples. Nitrogen and oxygen isotopic fractionation and oxygen atom exchange were consistent within each batch of analysis. There was no interference from any seawater matrixes. Only one other method published to date can measure the nitrate oxygen isotopic abundance in seawater and none that do so for nitrite alone in the presence of nitrate. This method may prove to be simpler, faster, and obtain isotopic information for lower concentrations of nitrate and nitrite than other methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater.

              Nitrate (NO3(-)) contamination of surface- and groundwater is an environmental problem in many regions of the world with intensive agriculture and high population densities. Knowledge of the sources of NO3(-) contamination in water is important for better management of water quality. Stable nitrogen (delta15N) and oxygen (delta18O) isotope data of NO3(-) have been frequently used to identify NO3(-) sources in water. This review summarizes typical delta15N- and delta18O-NO3(-) ranges of known NO3(-) sources, interprets constraints and future outlooks to quantify NO3(-) sources, and describes three analytical techniques ("ion-exchange method", "bacterial denitrification method", and "cadmium reduction method") for delta15N- and delta18)O-NO3(-) determination. Isotopic data can provide evidence for the presence of dominant NO3(-) sources. However, quantification, including uncertainty assessment, is lacking when multiple NO3(-) sources are present. Moreover, fractionation processes are often ignored, but may largely constrain the accuracy of NO3(-) source identification. These problems can be overcome if (1) NO3(-) isotopic data are combined with co-migrating discriminators of NO3(-) sources (e.g. (11)B), which are not affected by transformation processes, (2) contributions of different NO3(-) sources can be quantified via linear mixing models (e.g. SIAR), and (3) precise, accurate and high throughput isotope analytical techniques become available.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Hydrology
                Journal of Hydrology
                Elsevier BV
                00221694
                February 2023
                February 2023
                : 617
                : 129131
                Article
                10.1016/j.jhydrol.2023.129131
                81fdf4f4-26f0-45bb-8f0b-cbbe498c4f78
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article