80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interaction of staphylococci with bone

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococci, in particular Staphylococcus aureus, are the predominant cause of bone infections worldwide. These infections are painful, debilitating and with the rise in antibiotic-resistant forms, increasingly difficult to treat. The growth in the number of prosthetic joint replacement procedures also provides new opportunities for these infections to take hold. Comprehending the mechanisms by which staphylococci interact with and damage bone is critical to the development of new approaches to meet this challenge. This review summarises current understanding of the mechanisms by which staphylococci infect and damage bone. We address the role of the inflammatory response to staphylococcal infection in disrupting the homeostatic balance of bone matrix deposition and resorption and thereby mediating bone destruction. A number of virulence factors that have been shown to contribute to bone infection and pathology are discussed, however no single factor has been defined as being specific to bone infections. Although traditionally considered an extracellular pathogen, there is increasing evidence that staphylococci are able to invade host cells, and that an intracellular lifestyle may facilitate long-term persistence in bone tissue, enabling evasion of antimicrobials and host immune responses. ‘Small colony variant’ strains, with mutations disabling the electron transport pathway appear particularly adept at invading and persisting within host cells, and exhibit enhanced antimicrobial resistance, and may represent a further complication in the treatment and management of staphylococcal bone disease.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components

          Toll-like receptor (TLR) 2 and TLR4 are implicated in the recognition of various bacterial cell wall components, such as lipopolysaccharide (LPS). To investigate in vivo roles of TLR2, we generated TLR2-deficient mice. In contrast to LPS unresponsiveness in TLR4-deficient mice, TLR2-deficient mice responded to LPS to the same extent as wild-type mice. TLR2-deficient macrophages were hyporesponsive to several Gram-positive bacterial cell walls as well as Staphylococcus aureus peptidoglycan. TLR4-deficient macrophages lacked the response to Gram-positive lipoteichoic acids. These results demonstrate that TLR2 and TLR4 recognize different bacterial cell wall components in vivo and TLR2 plays a major role in Gram-positive bacterial recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNF-mediated inflammatory disease.

            JR Bradley (2008)
            TNF was originally described as a circulating factor that can cause necrosis of tumours, but has since been identified as a key regulator of the inflammatory response. This review describes the known signalling pathways and cell biological effects of TNF, and our understanding of the role of TNF in human disease. TNF interacts with two different receptors, designated TNFR1 and TNFR2, which are differentially expressed on cells and tissues and initiate both distinct and overlapping signal transduction pathways. These diverse signalling cascades lead to a range of cellular responses, which include cell death, survival, differentiation, proliferation and migration. Vascular endothelial cells respond to TNF by undergoing a number of pro-inflammatory changes, which increase leukocyte adhesion, transendothelial migration and vascular leak and promote thrombosis. The central role of TNF in inflammation has been demonstrated by the ability of agents that block the action of TNF to treat a range of inflammatory conditions, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease and psoriasis. The increased incidence of infection in patients receiving anti-TNF treatment has highlighted the physiological role of TNF in infectious diseases. 2007 Pathological Society of Great Britain and Ireland
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of RANKL/RANK/OPG in bone modeling and remodeling.

              The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-kappaB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.
                Bookmark

                Author and article information

                Journal
                Int J Med Microbiol
                Int. J. Med. Microbiol
                International Journal of Medical Microbiology
                Urban & Fischer Verlag
                1438-4221
                1618-0607
                February 2010
                February 2010
                : 300
                : 2-3
                : 193-204
                Affiliations
                Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
                Author notes
                [* ]Corresponding author. Tel.: +44 207 915 1118; fax: +44 207 915 1127. snair@ 123456eastman.ucl.ac.uk
                Article
                IJMM50461
                10.1016/j.ijmm.2009.10.003
                2814006
                19889575
                81f9422f-fd9d-4b8f-a312-6bdfa568463d
                © 2010 Elsevier GmbH.

                This document may be redistributed and reused, subject to certain conditions.

                History
                Categories
                Mini Review

                Microbiology & Virology
                osteoblasts,osteoclasts,bone infection,staphylococcus aureus,small colony variants,signalling

                Comments

                Comment on this article