The aim of this study was to compare the dynamics of heart rate (HR) response to exercise using a cycle ergometer (CE) and a treadmill (TM). Using a sample of 25 healthy male participants, the time constant of HR dynamics was estimated for both modalities in response to square-wave excitation.
The principal finding was that the time constant of heart-rate dynamics around somewhat-hard exercise intensity (Borg rating of perceived exertion = 13) does not differ significantly between the CE and TM (68.7 s ± 21.5 s vs. 62.5 s ± 18.5 s [mean ± standard deviation]; CE vs. TM; p = 0.20). An observed moderate level of evidence that root-mean-square model error was higher for the CE than for the TM (2.5 bpm ± 0.5 bpm vs. 2.2 bpm ± 0.5 bpm, p = 0.059) may reflect a decrease in heart rate variability with increasing HR intensity because, in order to achieve similar levels of perceived intensity, mean heart rate for the CE was ∼25 bpm lower than for the TM.
These results have important implications for model-based design of automatic HR controllers, because, in principle, the same dynamic controller, merely scaled according to the differing steady-state gains, should be able to be applied to the CE and TM exercise modalities.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.