41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8 + T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.

          Related collections

          Most cited references316

          • Record: found
          • Abstract: found
          • Article: not found

          HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells.

          Establishing a CD8(+) T cell-mediated immune correlate of protection in HIV disease is crucial to the development of vaccines designed to generate cell-mediated immunity. Historically, neither the quantity nor breadth of the HIV-specific CD8(+) T-cell response has correlated conclusively with protection. Here, we assess the quality of the HIV-specific CD8(+) T-cell response by measuring 5 CD8(+) T-cell functions (degranulation, IFN-gamma, MIP-1beta, TNF-alpha, and IL-2) simultaneously in chronically HIV-infected individuals and elite nonprogressors. We find that the functional profile of HIV-specific CD8(+) T cells in progressors is limited compared to that of nonprogressors, who consistently maintain highly functional CD8(+) T cells. This limited functionality is independent of HLA type and T-cell memory phenotype, is HIV-specific rather than generalized, and is not effectively restored by therapeutic intervention. Whereas the total HIV-specific CD8(+) T-cell frequency did not correlate with viral load, the frequency and proportion of the HIV-specific T-cell response with highest functionality inversely correlated with viral load in the progressors. Thus, rather than quantity or phenotype, the quality of the CD8(+) T-cell functional response serves as an immune correlate of HIV disease progression and a potential qualifying factor for evaluation of HIV vaccine efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

            The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In search of the ‘missing self’: MHC molecules and NK cell recognition

              Immunology Today, 11, 237-244
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/165385
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 July 2017
                2017
                : 8
                : 832
                Affiliations
                [1] 1Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB, Canada
                [2] 2Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: Guido Poli, Vita-Salute San Raffaele University, Italy

                Reviewed by: Roberto Biassoni, Istituto Giannina Gaslini (IRCCS), Italy; Mario (Mago) Clerici, Università degli Studi di Milano, Italy

                *Correspondence: Shokrollah Elahi, elahi@ 123456ualberta.ca

                Specialty section: This article was submitted to HIV and AIDS, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00832
                5513977
                28149297
                81eaf6b6-03bb-4ab3-b989-5746b06d2d44
                Copyright © 2017 Crux and Elahi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 May 2017
                : 30 June 2017
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 352, Pages: 26, Words: 23944
                Funding
                Funded by: Canadian Institutes of Health Research 10.13039/501100000024
                Award ID: 2014HOP-137696 and FDN-148442
                Categories
                Immunology
                Review

                Immunology
                major histocompatibility complex,human leukocyte antigen,classical human leukocyte antigens,non-classical human leukocyte antigens,human immunodeficiency virus,hepatitis c virus and immune regulation

                Comments

                Comment on this article