4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid

      , , , ,
      Euphytica
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.

          The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F(2:3) families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Composition of a Field of Maize

            G H Shull (1908)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.

              The genetic basis of heterosis of an elite rice hybrid was investigated by using an "immortalized F(2)" population produced by randomly permutated intermating of 240 recombinant inbred lines from a cross between the parents of Shanyou 63, the most widely cultivated hybrid in China. Measurements of heterosis for crosses in the immortalized F(2) population were obtained from replicated field trials over 2 years by inter-planting the hybrids with the parental recombinant inbred lines. The analyses were conducted making use of a linkage map comprising 231 segregating molecular marker loci covering the entire rice genome. Heterotic effects were detected at 33 loci for the four traits with modified composite interval mapping. The heterotic loci showed little overlap with quantitative trait loci for trait performance, suggesting that heterosis and trait performance may be conditioned by different sets of loci. Large numbers of digenic interactions were resolved by using two-way ANOVA and confirmed by randomization tests. All kinds of genetic effects, including partial-, full-, and overdominance at single-locus level and all three forms of digenic interactions (additive by additive, additive by dominance, and dominance by dominance), contributed to heterosis in the immortalized F(2) population, indicating that these genetic components were not mutually exclusive in the genetic basis of heterosis. Heterotic effects at the single-locus level, in combination with the marginal advantages of double heterozygotes caused by dominance by dominance interaction at the two-locus level could adequately explain the genetic basis of heterosis in Shanyou 63. These results may help reconcile the century-long debate concerning the genetic basis of heterosis.
                Bookmark

                Author and article information

                Journal
                Euphytica
                Euphytica
                Springer Nature
                0014-2336
                1573-5060
                June 29 2006
                June 1 2006
                : 149
                : 1-2
                : 121-131
                Article
                10.1007/s10681-005-9060-9
                81e40245-ba88-4b39-992a-1ebdccce8354
                © 2006
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,464

                Cited by17

                Most referenced authors249