11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Is melanopsin activation affecting large field color-matching functions?

      , ,
      Journal of the Optical Society of America A
      Optica Publishing Group

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Color theory is based on the exclusive activation of cones. However, since the discovery of melanopsin expressing cells in the human retina, evidence of its intrusion in brightness and color vision is increasing. We aimed to assess if differences between peripheral or large field and foveal color matches can be accounted for by melanopsin activation or rod intrusion. Photopic color matches by young observers showed that differences between extrafoveal and foveal results cannot be explained by rod intrusion. Furthermore, statistical analyses on existing color-matching functions suggest a role of melanopsin activation, particularly, in large field S fundamentals.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Phototransduction by retinal ganglion cells that set the circadian clock.

          Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

            Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.

              In the mammalian retina, besides the conventional rod-cone system, a melanopsin-associated photoreceptive system exists that conveys photic information for accessory visual functions such as pupillary light reflex and circadian photo-entrainment. On ablation of the melanopsin gene, retinal ganglion cells that normally express melanopsin are no longer intrinsically photosensitive. Furthermore, pupil reflex, light-induced phase delays of the circadian clock and period lengthening of the circadian rhythm in constant light are all partially impaired. Here, we investigated whether additional photoreceptive systems participate in these responses. Using mice lacking rods and cones, we measured the action spectrum for phase-shifting the circadian rhythm of locomotor behaviour. This spectrum matches that for the pupillary light reflex in mice of the same genotype, and that for the intrinsic photosensitivity of the melanopsin-expressing retinal ganglion cells. We have also generated mice lacking melanopsin coupled with disabled rod and cone phototransduction mechanisms. These animals have an intact retina but fail to show any significant pupil reflex, to entrain to light/dark cycles, and to show any masking response to light. Thus, the rod-cone and melanopsin systems together seem to provide all of the photic input for these accessory visual functions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                JOAOD6
                Journal of the Optical Society of America A
                J. Opt. Soc. Am. A
                Optica Publishing Group
                1084-7529
                1520-8532
                2022
                2022
                May 26 2022
                June 01 2022
                : 39
                : 6
                : 1104
                Article
                10.1364/JOSAA.457223
                36215541
                81b933f9-c327-4371-aec5-0c39597d0115
                © 2022

                https://doi.org/10.1364/OA_License_v2#VOR

                History

                Comments

                Comment on this article