Circular RNAs (circRNAs) are a class of non-coding RNAs that are generated via alternative back-splicing, which connects the terminal 5′ and 3′ends. Due to their unique loop structure, circRNAs are resistant to ribonucleases and more stable than linear RNAs. In vivo, they are usually highly conserved and stably expressed in tissue/developmental-stage-specific manners. Generally, circRNAs function as microRNA sponges and splicing regulators, as well as in protein binding and transcription. Some circRNAs contain open reading frames with internal ribosomal entry site elements and can thus encode specific proteins. Previously, circRNAs were thought to be erroneous splicing products or by-products of mRNA splicing. With the development of the next-generation sequencing techniques, it has become increasingly clear that circRNAs are abundantly widespread in eukaryotes and that they play significant roles in malignant tumor progression. The present review briefly introduces the biogenesis and functions of circRNAs, as well as summarizes recent research in several common malignancies. The present review also addresses the prospects of circRNAs in clinical applications.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.