9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Questioning the sex-specific differences in the association of smoking on the survival rate of hospitalized COVID-19 patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          In the absence of a universally accepted association between smoking and COVID-19 health outcomes, we investigated this relationship in a representative cohort from one of the world’s highest tobacco consuming regions. This is the first report from the Middle East and North Africa that tackles specifically the association of smoking and COVID-19 mortality while demonstrating a novel sex-discrepancy in the survival rates among patients.

          Methods

          Clinical data for 743 hospitalized COVID-19 patients was retrospectively collected from the leading centre for COVID-19 testing and treatment in Lebanon. Logistic regression, Kaplan-Meier survival curves and Cox proportional hazards model adjusted for age and stratified by sex were used to assess the association between the current cigarette smoking status of patients and COVID-19 outcomes.

          Results

          In addition to the high smoking prevalence among our hospitalized COVID-19 patients (42.3%), enrolled smokers tended to have higher reported ICU admissions (28.3% vs 16.6%, p<0.001), longer length of stay in the hospital (12.0 ± 7.8 vs 10.8 days, p<0.001) and higher death incidences as compared to non-smokers (60.5% vs 39.5%, p<0.001). Smokers had an elevated odds ratio for death (OR = 2.3, p<0.001) and for ICU admission (OR = 2.0, p<0.001) which remained significant in a multivariate regression model. Once adjusted for age and stratified by sex, our data revealed that current smoking status reduces survival rate in male patients ([HR] = 1.9 [95% (CI), 1.029–3.616]; p = 0.041) but it does not affect survival outcomes among hospitalized female patients([HR] = 0.79 [95% CI = 0.374–1.689]; p = 0.551).

          Conclusion

          A high smoking prevalence was detected in our hospitalized COVID-19 cohort combined with worse prognosis and higher mortality rate in smoking patients. Our study was the first to highlight potential sex-specific consequences for smoking on COVID-19 outcomes that might further explain the higher vulnerability to death from this disease among men.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          COVID-19 and smoking: A systematic review of the evidence

          COVID-19 is a coronavirus outbreak that initially appeared in Wuhan, Hubei Province, China, in December 2019, but it has already evolved into a pandemic spreading rapidly worldwide 1,2 . As of 18 March 2020, a total number of 194909 cases of COVID-19 have been reported, including 7876 deaths, the majority of which have been reported in China (3242) and Italy (2505) 3 . However, as the pandemic is still unfortunately under progression, there are limited data with regard to the clinical characteristics of the patients as well as to their prognostic factors 4 . Smoking, to date, has been assumed to be possibly associated with adverse disease prognosis, as extensive evidence has highlighted the negative impact of tobacco use on lung health and its causal association with a plethora of respiratory diseases 5 . Smoking is also detrimental to the immune system and its responsiveness to infections, making smokers more vulnerable to infectious diseases 6 . Previous studies have shown that smokers are twice more likely than non-smokers to contract influenza and have more severe symptoms, while smokers were also noted to have higher mortality in the previous MERS-CoV outbreak 7,8 . Given the gap in the evidence, we conducted a systematic review of studies on COVID-19 that included information on patients’ smoking status to evaluate the association between smoking and COVID-19 outcomes including the severity of the disease, the need for mechanical ventilation, the need for intensive care unit (ICU) hospitalization and death. The literature search was conducted on 17 March 2020, using two databases (PubMed, ScienceDirect), with the search terms: [‘smoking’ OR ‘tobacco’ OR ‘risk factors’ OR ‘smoker*’] AND [‘COVID-19’ OR ‘COVID 19’ OR ‘novel coronavirus’ OR ‘sars cov-2’ OR ‘sars cov 2’] and included studies published in 2019 and 2020. Further inclusion criteria were that the studies were in English and referred to humans. We also searched the reference lists of the studies included. A total of 71 studies were retrieved through the search, of which 66 were excluded after full-text screening, leaving five studies that were included. All of the studies were conducted in China, four in Wuhan and one across provinces in mainland China. The populations in all studies were patients with COVID-19, and the sample size ranged from 41 to 1099 patients. With regard to the study design, retrospective and prospective methods were used, and the timeframe of all five studies covered the first two months of the COVID-19 pandemic (December 2019, January 2020). Specifically, Zhou et al. 9 studied the epidemiological characteristics of 191 individuals infected with COVID-19, without, however, reporting in more detail the mortality risk factors and the clinical outcomes of the disease. Among the 191 patients, there were 54 deaths, while 137 survived. Among those that died, 9% were current smokers compared to 4% among those that survived, with no statistically significant difference between the smoking rates of survivors and non-survivors (p=0.21) with regard to mortality from COVID-19. Similarly, Zhang et al. 10 presented clinical characteristics of 140 patients with COVID-19. The results showed that among severe patients (n=58), 3.4% were current smokers and 6.9% were former smokers, in contrast to non-severe patients (n=82) among which 0% were current smokers and 3.7% were former smokers , leading to an OR of 2.23; (95% CI: 0.65–7.63; p=0.2). Huang et al. 11 studied the epidemiological characteristics of COVID-19 among 41 patients. In this study, none of those who needed to be admitted to an ICU (n=13) was a current smoker. In contrast, three patients from the non-ICU group were current smokers, with no statistically significant difference between the two groups of patients (p=0.31), albeit the small sample size of the study. The largest study population of 1099 patients with COVID-19 was provided by Guan et al. 12 from multiple regions of mainland China. Descriptive results on the smoking status of patients were provided for the 1099 patients, of which 173 had severe symptoms, and 926 had non-severe symptoms. Among the patients with severe symptoms, 16.9% were current smokers and 5.2% were former smokers, in contrast to patients with non-severe symptoms where 11.8% were current smokers and 1.3% were former smokers. Additionally, in the group of patients that either needed mechanical ventilation, admission to an ICU or died, 25.5% were current smokers and 7.6% were former smokers. In contrast, in the group of patients that did not have these adverse outcomes, only 11.8% were current smokers and 1.6% were former smokers. No statistical analysis for evaluating the association between the severity of the disease outcome and smoking status was conducted in that study. Finally, Liu et al. 13 found among their population of 78 patients with COVID-19 that the adverse outcome group had a significantly higher proportion of patients with a history of smoking (27.3%) than the group that showed improvement or stabilization (3.0%), with this difference statistically significant at the p=0.018 level. In their multivariate logistic regression analysis, the history of smoking was a risk factor of disease progression (OR=14.28; 95% CI: 1.58–25.00; p= 0.018). We identified five studies that reported data on the smoking status of patients infected with COVID-19. Notably, in the largest study that assessed severity, there were higher percentages of current and former smokers among patients that needed ICU support, mechanical ventilation or who had died, and a higher percentage of smokers among the severe cases 12 . However, from their published data we can calculate that the smokers were 1.4 times more likely (RR=1.4, 95% CI: 0.98–2.00) to have severe symptoms of COVID-19 and approximately 2.4 times more likely to be admitted to an ICU, need mechanical ventilation or die compared to non-smokers (RR=2.4, 95% CI: 1.43–4.04). In conclusion, although further research is warranted as the weight of the evidence increases, with the limited available data, and although the above results are unadjusted for other factors that may impact disease progression, smoking is most likely associated with the negative progression and adverse outcomes of COVID-19. Table 1 Overview of the five studies included in the systematic review Title Setting Population Study design and time horizon Outcomes Smoking rates by outcome Zhou et al. 9 (2020)Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study Jinyintan Hospital and Wuhan Pulmonary Hospital, Wuhan, China All adult inpatients (aged ≥18 years) with laboratory confirmed COVID-19 (191 patients) Retrospective multicenter cohort study until 31 January 2020 Mortality 54 patients died during hospitalisation and 137 were discharged Current smokers: n=11 (6%)Non-survivors: n=5 (9%)Survivors: n=6 (4%)(p=0.20) Current smoker vs non-smokerUnivariate logistic regression(OR=2.23; 95% CI: 0.65–7.63; p=0.2) Zhang et al. 10 (2020)Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China No. 7 Hospital of Wuhan, China All hospitalised patients clinically diagnosed as ‘viral pneumonia’ based on their clinical symptoms with typical changes in chest radiology (140 patients) Retrospective 16 January to 3 February 2020 Disease Severity Non-severepatients: n=82Severe patients:n=58 Disease Severity Former smokers: n=7Severe: n=4 (6.9%)Non-severe: n=3 (3.7%) (p= 0.448) Current smokers: n=2Severe: n=2 (3.4%)Non-severe: n=0 (0%) Guan et al. 12 (2019)Clinical Characteristics of Coronavirus Disease 2019 in China 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China Patients with laboratory-confirmed COVID-19 (1099 patients) Retrospective until 29 January 2020 Severity and admission to an ICU, the use of mechanical ventilation, or death Non-severe patients: n=926 Severe patients: n=173 By severity Severe cases16.9% current smokers5.2% former smokers77.9% never smokers Non-severe cases11.8% current smokers1.3% former smokers86.9% never smokers By mechanical ventilation, ICU or death Needed mechanical ventilation, ICU or died25.8% current smokers7.6% former smokers66.7% non-smokers No mechanical ventilation, ICU or death11.8% current smokers1.6% former smokers86.7% never smokers Huang et al. 11 (2020)Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China A hospital in Wuhan, China Laboratory-confirmed 2019-nCoV patients in Wuhan (41 patients) Prospective from 16 December 2019 to 2 January 2020 Mortality As of 22 January 2020, 28 (68%) of 41 patients were discharged and 6 (15%) patients died Current smokers: n=3ICU care: n=0Non-ICU care: n=3 (11%) Current smokers in ICU care vs non-ICU care patients (p=0.31) Liu et al. 13 (2019)Analysis of factors associated with disease outcomes in hospitalised patients with 2019 novel coronavirus disease Three tertiary hospitals in Wuhan, China Patients tested positive for COVID-19 (78 patients) Retrospective multicentre cohort study from 30 December 2019 to 15 January 2020 Disease progression 11 patients (14.1%) in the progression group 67 patients (85.9%) in the improvement/stabilization group 2 deaths Negative progression group: 27.3% smokersIn the improvement group: 3% smokers The negative progression group had a significantly higher proportion of patients with a history of smoking than the improvement/stabilisation group (27.3% vs 3.0%)Multivariate logistic regression analysis indicated that the history of smoking was a risk factor of disease progression (OR=14.28; 95% CI: 1.58–25.00; p= 0.018)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Smoking Is Associated With COVID-19 Progression: A Meta-analysis

            Abstract Introduction Smoking depresses pulmonary immune function and is a risk factor contracting other infectious diseases and more serious outcomes among people who become infected. This paper presents a meta-analysis of the association between smoking and progression of the infectious disease COVID-19. Methods PubMed was searched on April 28, 2020, with search terms “smoking”, “smoker*”, “characteristics”, “risk factors”, “outcomes”, and “COVID-19”, “COVID”, “coronavirus”, “sar cov-2”, “sar cov 2”. Studies reporting smoking behavior of COVID-19 patients and progression of disease were selected for the final analysis. The study outcome was progression of COVID-19 among people who already had the disease. A random effects meta-analysis was applied. Results We identified 19 peer-reviewed papers with a total of 11,590 COVID-19 patients, 2,133 (18.4%) with severe disease and 731 (6.3%) with a history of smoking. A total of 218 patients with a history of smoking (29.8%) experienced disease progression, compared with 17.6% of non-smoking patients. The meta-analysis showed a significant association between smoking and progression of COVID-19 (OR 1.91, 95% confidence interval [CI] 1.42-2.59, p = 0.001). Limitations in the 19 papers suggest that the actual risk of smoking may be higher. Conclusions Smoking is a risk factor for progression of COVID-19, with smokers having higher odds of COVID-19 progression than never smokers. Implications Physicians and public health professionals should collect data on smoking as part of clinical management and add smoking cessation to the list of practices to blunt the COVID-19 pandemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for disease severity, unimprovement, and mortality of COVID-19 patients in Wuhan, China

              Objective Since December 2019, coronavirus disease (COVID-19) emerged in Wuhan. However, the characteristics and risk factors associated with disease severity, unimprovement and mortality are unclear. Methods All consecutive patients diagnosed with COVID-19 admitted to the Renmin Hospital of Wuhan University from January 11 to February 6, 2020 were enrolled in this retrospective cohort study. Results A total of 663 COVID-19 patients were included in this study. Among those, 247 (37.3%) had at least one kind of chronic disease. A total of 0.5% (n=3) of patients were diagnosed with mild COVID-19, while 37.8% (251/663), 47.5% (315/663), and 14.2% (94/663) were in moderate, severe, and critical condition, respectively. In our hospital during follow-up, 251 of 663 (37.9%) patients were improved and 25 patients died, leading to a mortality rate of 3.77%. Older patients (>60 years old) and those with chronic diseases were prone to have severe and critical COVID-19 conditions, show unimprovement, and die (P < 0.001, < 0.001). Multivariate logistic regression analysis identified being male (OR = 0.486, 95% CI 0.311-0.758; P = 0.001), having severe COVID-19 conditions (OR = 0.129, 95% CI 0.082-0.201; P < 0.001), expectoration (OR = 1.796, 95% CI 1.062-3.036; P = 0.029), muscle ache (OR = 0.309, 95% CI 0.153-0.626; P = 0.001), and decreased albumin (OR = 1.929, 95% CI 1.199-3.104; P = 0.007) were associated with unimprovement in COVID-19 patients. Conclusion Being male, in severe COVID-19 conditions, expectoration, muscle ache, and decreased albumin were independent risk factors which influence the improvement of COVID-19 patients.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: MethodologyRole: Writing – review & editing
                Role: Data curationRole: Writing – review & editing
                Role: Data curationRole: Writing – review & editing
                Role: ConceptualizationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 August 2021
                2021
                5 August 2021
                : 16
                : 8
                : e0255692
                Affiliations
                [1 ] Clinical Research Unit, Rafik Hariri University Hospital, Beirut, Lebanon
                [2 ] Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [3 ] Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [4 ] Department of Pulmonary and Intensive Care Unit, Rafik Hariri University Hospital, Beirut, Lebanon
                [5 ] Center for Environmental Medicine Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                National Yang-Ming University, TAIWAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-4072-6143
                Article
                PONE-D-21-06755
                10.1371/journal.pone.0255692
                8341532
                34351990
                81967420-316e-4dde-ae80-359f0d9cf091
                © 2021 Khalil et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 March 2021
                : 21 July 2021
                Page count
                Figures: 2, Tables: 2, Pages: 10
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Psychology
                Behavior
                Habits
                Smoking Habits
                Social Sciences
                Psychology
                Behavior
                Habits
                Smoking Habits
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Biology and Life Sciences
                Population Biology
                Population Metrics
                Death Rates
                Medicine and Health Sciences
                Epidemiology
                Medical Risk Factors
                Medicine and Health Sciences
                Health Care
                Health Care Facilities
                Hospitals
                Medicine and Health Sciences
                Diagnostic Medicine
                Virus Testing
                People and Places
                Geographical Locations
                Asia
                Lebanon
                Medicine and Health Sciences
                Health Care
                Health Care Facilities
                Hospitals
                Intensive Care Units
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article