39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A measure for brain complexity: relating functional segregation and integration in the nervous system.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (CN), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. CN is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. CN is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of CN. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          0027-8424
          0027-8424
          May 24 1994
          : 91
          : 11
          Affiliations
          [1 ] Neurosciences Institute, La Jolla, CA 92037.
          Article
          10.1073/pnas.91.11.5033
          43925
          8197179
          8149d296-0b17-42e8-bbb6-9fb5b41824d5
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content74

          Cited by320