51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pangenome and genomic signatures linked to the dominance of the lineage-4 of Mycobacterium tuberculosis isolated from extrapulmonary tuberculosis patients in western Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The lineage 4 (L4) of Mycobacterium tuberculosis (MTB) is not only globally prevalent but also locally dominant, surpassing other lineages, with lineage 2 (L2) following in prevalence. Despite its widespread occurrence, factors influencing the expansion of L4 and its sub-lineages remain poorly understood both at local and global levels. Therefore, this study aimed to conduct a pan-genome and identify genomic signatures linked to the elevated prevalence of L4 sublineages among extrapulmonary TB (EPTB) patients in western Ethiopia.

          Methods

          A cross-sectional study was conducted at an institutional level involving confirmed cases of extrapulmonary tuberculosis (EPTB) patients from August 5, 2018, to December 30, 2019. A total of 75 MTB genomes, classified under lineage 4 (L4), were used for conducting pan-genome and genome-wide association study (GWAS) analyses. After a quality check, variants were identified using MTBseq, and genomes were de novo assembled using SPAdes. Gene prediction and annotation were performed using Prokka. The pan-genome was constructed using GET_HOMOLOGUES, and its functional analysis was carried out with the Bacterial Pan-Genome Analysis tool (BPGA). For GWAS analysis, Scoary was employed with Benjamini-Hochberg correction, with a significance threshold set at p-value ≤ 0.05.

          Results

          The analysis revealed a total of 3,270 core genes, predominantly associated with orthologous groups (COG) functions, notably in the categories of ‘[R] General function prediction only’ and ‘[I] Lipid transport and metabolism’. Conversely, functions related to ‘[N] Cell motility’ and ‘[Q] Secondary metabolites biosynthesis, transport, and catabolism’ were primarily linked to unique and accessory genes. The pan-genome of MTB L4 was found to be open. Furthermore, the GWAS study identified genomic signatures linked to the prevalence of sublineages L4.6.3 and L4.2.2.2.

          Conclusions

          Apart from host and environmental factors, the sublineage of L4 employs distinct virulence factors for successful dissemination in western Ethiopia. Given that the functions of these newly identified genes are not well understood, it is advisable to experimentally validate their roles, particularly in the successful transmission of specific L4 sublineages over others.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

              The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: InvestigationRole: SoftwareRole: ValidationRole: Writing – review & editing
                Role: SupervisionRole: Writing – review & editing
                Role: SupervisionRole: Writing – review & editing
                Role: InvestigationRole: Writing – review & editing
                Role: InvestigationRole: Writing – review & editing
                Role: InvestigationRole: Writing – review & editing
                Role: SupervisionRole: Writing – review & editing
                Role: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 July 2024
                2024
                : 19
                : 7
                : e0304060
                Affiliations
                [1 ] Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
                [2 ] Collage of Natural and Computational Science, Wallaga University, Nekemte, Ethiopia
                [3 ] J. Craig Venter Institute, Rockville, Maryland, United States of America
                [4 ] J. Craig Venter Institute, La Jolla, California, United States of America
                [5 ] Institute of Agriculture, The University of Tennessee, Tennessee, Knoxville, United States of America
                [6 ] College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
                The University of Georgia, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-7816-5209
                https://orcid.org/0000-0003-2108-8905
                https://orcid.org/0000-0003-3987-0671
                Article
                PONE-D-24-08245
                10.1371/journal.pone.0304060
                11271921
                39052555
                811b3008-c711-4e7b-ad5a-b74bc56ed6ff

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 6 March 2024
                : 6 May 2024
                Page count
                Figures: 6, Tables: 2, Pages: 23
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100007941, Addis Ababa University;
                Award ID: Ref No. RD/PY 6223/2018
                Award Recipient :
                Funded by: J. Craig Venter Institute, United States of America
                The study was financially supported by the Office of Vice President for Research and Technology Transfer, Addis Ababa University (Ref No. RD/PY 6223/2018). The research project also obtained support in kind such as reagents and research supplies from J. Craig Venter Institute, United States of America. Role of funding agency: The funding agency had no direct say in the project methods or outcome beyond providing funding for materials and personnel, and did not directly contribute to the writing of this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Bacteria
                Actinobacteria
                Mycobacterium Tuberculosis
                Biology and Life Sciences
                Genetics
                Genomics
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Genetics
                Bacterial Genomics
                Biology and Life Sciences
                Genetics
                Microbial Genetics
                Bacterial Genetics
                Bacterial Genomics
                Biology and Life Sciences
                Genetics
                Genomics
                Microbial Genomics
                Bacterial Genomics
                Biology and Life Sciences
                Microbiology
                Microbial Genomics
                Bacterial Genomics
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genome-Wide Association Studies
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genome-Wide Association Studies
                Biology and Life Sciences
                Genetics
                Human Genetics
                Genome-Wide Association Studies
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis
                Medicine and Health Sciences
                Medical Conditions
                Tropical Diseases
                Tuberculosis
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Biology and Life Sciences
                Genetics
                Single Nucleotide Polymorphisms
                Custom metadata
                The WGS data for MTB has been submitted to the Short Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) under the BioProject ID PRJNA1056148.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article