61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathways of cellular proteostasis in aging and disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Klaips et al. outline the pathways and molecular mechanisms of cellular protein homeostasis, or proteostasis, and discuss how a decline in proteostasis during aging contributes to disease.

          Abstract

          Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular chaperones in protein folding and proteostasis.

          Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

            Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hsp70 chaperones: Cellular functions and molecular mechanism

              Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                2 January 2018
                : 217
                : 1
                : 51-63
                Affiliations
                [1]Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
                Author notes
                Correspondence to F. Ulrich Hartl: uhartl@ 123456biochem.mpg.de ;
                Courtney L. Klaips: klaips@ 123456biochem.mpg.de
                Author information
                http://orcid.org/0000-0002-7941-135X
                Article
                201709072
                10.1083/jcb.201709072
                5748993
                29127110
                810f73d6-1f03-4b0d-8e38-e4726c013b80
                © 2018 Klaips et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 14 September 2017
                : 17 October 2017
                : 18 October 2017
                Funding
                Funded by: European Commission, DOI https://doi.org/10.13039/501100000780;
                Award ID: FP7 GA ERC-2012-SyG_318987–ToPAG
                Funded by: Munich Cluster for Systems Neurology
                Award ID: EXC 010 SyNergy
                Categories
                Reviews
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article