18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insight into the Pathology of a COL1A1 Signal Peptide Heterozygous Mutation Leading to Severe Osteogenesis Imperfecta

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteogenesis imperfecta or “brittle bone disease” is a congenital disorder of connective tissue causing the bone to break easily. Around 85–90% of cases are due to autosomal dominant mutations in the genes encoding type I collagen, the major organic component of bone. Genotype–phenotype correlations have shown that quantitative defects of collagen type I lead to mild OI, whereas structural defects show a wide clinical range from mild to perinatal lethal. This may partially be explained by the type of amino acid substitution and the relative location in the domain structure. To fully understand the variability of the clinical manifestation and the underlying pathomechanisms, further investigations are required. Here we provide the first biochemical characterization of a mutation at the signal peptide cleavage site of COL1A1, a domain not yet characterized. By steady-state analysis, we observed reduced production of collagen type I. Furthermore, by pulse-chase analysis we detected delayed secretion and partial intracellular retention of collagen I. In the cellular fraction, the electrophoretic migration was abnormal; however, secreted type I collagen showed a normal migration pattern. The intracellular retention of collagen I was confirmed by immunofluorescent staining. Moreover, transmission electron microscopy of cultured fibroblasts revealed enlargement of ER cisternae. These results further support the hypothesis that mechanisms interfering with ER integrity play an important role in the pathology of severe OI.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic heterogeneity in osteogenesis imperfecta.

          An epidemiological and genetical study of osteogenesis imperfecta (OI) in Victoria, Australia confirmed that there are at least four distinct syndromes at present called OI. The largest group of patients showed autosomal dominant inheritance of osteoporosis leading to fractures and distinctly blue sclerae. A large proportion of adults had presenile deafness or a family history of presenile conductive hearing loss. A second group, who comprised the majority of newborns with neonatal fractures, all died before or soon after birth. These had characteristic broad, crumpled femora and beaded ribs in skeletal x-rays. Autosomal recessive inheritance was likely for some, if not all, of these cases. A third group, two thirds of whom had fractures at birth, showed severe progressive deformity of limbs and spine. The density of scleral blueness appeared less than that seen in the first group of patients and approximated that seen in normal children and adults. Moreover, the blueness appeared to decrease with age. All patients in this group were sporadic cases. The mode of inheritance was not resolved by the study, but it is likely that the group is heterogeneous with both dominant and recessive genotypes responsible for the syndrome. The fourth group of patients showed dominant inheritance of osteoporosis leading to fractures, with variable deformity of long bones, but normal sclerae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans.

            Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype-phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in alpha1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691-823 and 910-964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril-matrix interactions. Recurrences at the same site in alpha2(I) are generally concordant for outcome, unlike alpha1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In alpha2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype-phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations.

              Tissue-specific extracellular matrices (ECMs) are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited connective tissue disorders. Mutations cause ECM dysfunction by combinations of two mechanisms. First, secretion of the mutated ECM components can be reduced by mutations affecting synthesis or by structural mutations causing cellular retention and/or degradation. Second, secretion of mutant protein can disturb crucial ECM interactions, structure and stability. Moreover, recent experiments suggest that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, contributes to the molecular pathology. Targeting ER stress might offer a new therapeutic strategy.
                Bookmark

                Author and article information

                Contributors
                +41 44 266 7758 , Cecilia.Giunta@kispi.uzh.ch
                Journal
                Calcif Tissue Int
                Calcif. Tissue Int
                Calcified Tissue International
                Springer US (New York )
                0171-967X
                1432-0827
                3 November 2017
                3 November 2017
                2018
                : 102
                : 3
                : 373-379
                Affiliations
                [1 ]ISNI 0000 0001 0726 4330, GRID grid.412341.1, Connective Tissue Unit, Division of Metabolism and Children’s Research Center, , University Children’s Hospital, ; Steinwiesstrasse 75, 8032 Zurich, Switzerland
                [2 ]ISNI 0000 0001 2154 6641, GRID grid.419038.7, Department of Medical Genetics and Skeletal Rare Diseases, , Rizzoli Orthopaedic Institute, ; Bologna, Italy
                [3 ]ISNI 0000 0004 1757 8749, GRID grid.414818.0, Medical Genetics Unit, , Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, ; Milano, Italy
                Article
                359
                10.1007/s00223-017-0359-z
                5818590
                29101475
                80ffc555-d119-469e-8a59-4087f3a7bdb5
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 25 September 2017
                : 30 October 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Award ID: 310030_138288
                Award Recipient :
                Categories
                Case Reports
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2018

                Human biology
                osteogenesis imperfecta,bone,collagen,col1a1,signal peptide mutation,signal peptide cleavage site

                Comments

                Comment on this article