20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fórmulas para el coeficiente de arrastre y la ecuación Navier-Stokes fraccional Translated title: Formulas for Drag Coefficient and the Navier-Stokes Fractional Equation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Se quiere encontrar la relación entre la ecuación de Navier-Stokes fraccional y las fórmulas para el coeficiente de arrastre, como las de Kármán-Schoenherr, Prandtl-Kármán, y Nikuradse. Los cambios de escala producen una renormalización para las ecuaciones de la capa límite, que contiene la hipótesis esencial de la delgadez de dicha capa, y da lugar a una descripción multifractal. Se obtiene una generalización del resultado experimental de Blasius para el factor de fricción. Si se reajustan las relaciones del número de rasgos del multifractal, se infieren las fórmulas, objeto de este estudio, y se las representa como un bi-multifractal, lo que permite un camino analítico para el número de Reynolds crítico y señala a la de Kármán-Schoenherr como la fórmula apropiada para el límite a la derecha de la subcapa viscosa. Los reajustes se traducen en matizar las aproximaciones de la relación entre los números de Euler y Reynolds, o bien en los decaimientos relativos del coeficiente de arrastre. Se aplican los resultados a la descripción de la capa límite turbulenta y a las interacciones entre corrientes y fondos (en ríos, desiertos y huracanes).

          Translated abstract

          The aim of this paper is to find the relationship between the Navier-Stokes fractional equation and formulas for the drag coefficient, such as the Kármán-Schoenherr, Prandtl-Kármán, and Nikuradse. Scale changes produce a renormalization of boundary layer equations, which contains the key hypothesis about the thinness of this layer and leads to a multifractal description. A generalization is obtained from the Blasius experimental result for friction. By adjusting the relation of the number of features of the multifractal, the formulas that are the objective of this study can be inferred and represented as a bi-multifractal. This allows for an analysis with the critical Reynolds number and indicates that the Kármán-Schoenherr is the most suitable formula for the right boundary of the viscous sublayer. The adjustments resulted in refining the relation between Euler and Reynolds numbers, or obtaining the decays related to the drag coefficient. The results are applied to the description of the turbulent boundary layer and the interactions between flows and bottoms (for rivers, deserts and hurricanes).

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Wind stress on a water surface

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced drag coefficient for high wind speeds in tropical cyclones.

            The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The multifractal nature of turbulent energy dissipation

                Bookmark

                Author and article information

                Journal
                tca
                Tecnología y ciencias del agua
                Tecnol. cienc. agua
                Instituto Mexicano de Tecnología del Agua, Coordinación de Comunicación, Participación e Información (Jiutepec, Morelos, Mexico )
                2007-2422
                April 2014
                : 5
                : 2
                : 149-160
                Affiliations
                [01] Jiutepec Morelos orgnameInstituto Mexicano de Tecnología del Agua México
                Article
                S2007-24222014000200010 S2007-2422(14)00500200010
                80fcfb96-5dc0-4857-a858-d5e4a779f2e5

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 31 May 2012
                : 03 July 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 17, Pages: 12
                Product

                SciELO Mexico

                Categories
                Artículos técnicos

                Navier-Stokes fractional equation,multifractal,capa límite,ecuación Navier-Stokes,boundary layer,coeficiente de arrastre,drag coefficient

                Comments

                Comment on this article