16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Why visual attention and awareness are different

      Trends in Cognitive Sciences
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic predictions: oscillations and synchrony in top-down processing.

          Classical theories of sensory processing view the brain as a passive, stimulus-driven device. By contrast, more recent approaches emphasize the constructive nature of perception, viewing it as an active and highly selective process. Indeed, there is ample evidence that the processing of stimuli is controlled by top-down influences that strongly shape the intrinsic dynamics of thalamocortical networks and constantly create predictions about forthcoming sensory events. We discuss recent experiments indicating that such predictions might be embodied in the temporal structure of both stimulus-evoked and ongoing activity, and that synchronous oscillations are particularly important in this process. Coherence among subthreshold membrane potential fluctuations could be exploited to express selective functional relationships during states of expectancy or attention, and these dynamic patterns could allow the grouping and selection of distributed neuronal responses for further processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The magical number 4 in short-term memory: a reconsideration of mental storage capacity.

            M N Cowan (2001)
            Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The distinct modes of vision offered by feedforward and recurrent processing.

              An analysis of response latencies shows that when an image is presented to the visual system, neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical neurons is not determined by this feedforward sweep alone. Horizontal connections within areas, and higher areas providing feedback, result in dynamic changes in tuning. The differences between feedforward and recurrent processing could prove pivotal in understanding the distinctions between attentive and pre-attentive vision as well as between conscious and unconscious vision. The feedforward sweep rapidly groups feature constellations that are hardwired in the visual brain, yet is probably incapable of yielding visual awareness; in many cases, recurrent processing is necessary before the features of an object are attentively grouped and the stimulus can enter consciousness.
                Bookmark

                Author and article information

                Journal
                Trends in Cognitive Sciences
                Trends in Cognitive Sciences
                Elsevier BV
                13646613
                January 2003
                January 2003
                : 7
                : 1
                : 12-18
                Article
                10.1016/S1364-6613(02)00013-X
                80f713fa-bb93-4735-9137-c755c6cfcc24
                © 2003

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article