43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation of a nanopearl powder/C-HA (chitosan-hyaluronic acid)/rhBMP-2 (recombinant human bone morphogenetic protein-2) composite artificial bone material and a preliminary study of its effects on MC3T3-E1 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          A nanopearl powder/C-HA (chitosan-hyaluronic acid)/rhBMP-2 (recombinant human bone morphogenetic protein-2) composite artificial bone material was prepared, and its biological properties were evaluated. The nanopearl powder/C-HA/rhBMP-2 composite porous artificial bone material was prepared using the freeze-drying method after the nanopearl powder was prepared using mechanical ball milling. The particle was measured with a transmission electron microscope, its surface morphology and pore size were observed under a scanning electron microscope. The porosity of the artificial bone was determined using pycnometry, a compression performance test was conducted with a universal testing machine, and XRD (X-ray diffraction) patterns were recorded to examine the crystal form of the pearl powder in the composite artificial bone. Finally, the artificial bone was cocultured with mouse MC3T3-E1 cells to investigate its effects on cell proliferation and differentiation and the expression of osteogenesis-related genes. The pearl powder prepared in this experiment had a particle size in the nanometer range. This nanopearl powder, along with C-HA and rhBMP-2, was compounded into the nanopearl powder/C-HA/rhBMP-2 composite artificial bone, showing pore sizes of 188.53 ± 15.32 μm, a porosity of 86.43 ± 2.78% and a compressive strength of 0.342 ± 0.024 MPa. Notably, rhBMP-2 was released from the artificial bone in a sustained manner. Moreover, this artificial bone promoted the adhesion, proliferation, and differentiation of MC3T3-E1 cells and upregulated the expression of ColαI (collagen α1), OCN (osteocalcin), OPN (osteopontin) and Runx2 (runt-related gene 2). Conclusively, this nanopearl powder/C-HA/rhBMP-2 composite artificial bone material showed good performance and cytocompatibility, suggesting that it can be used for bone tissue engineering.

          GRAPHICAL ABSTRACT

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.

            In the literature there are conflicting reports on the optimal scaffold mean pore size required for successful bone tissue engineering. This study set out to investigate the effect of mean pore size, in a series of collagen-glycosaminoglycan (CG) scaffolds with mean pore sizes ranging from 85 microm to 325 microm, on osteoblast adhesion and early stage proliferation up to 7 days post-seeding. The results show that cell number was highest in scaffolds with the largest pore size of 325 microm. However, an early additional peak in cell number was also seen in scaffolds with a mean pore size of 120 microm at time points up to 48 h post-seeding. This is consistent with previous studies from our laboratory which suggest that scaffold specific surface area plays an important role on initial cell adhesion. This early peak disappears following cell proliferation indicating that while specific surface area may be important for initial cell adhesion, improved cell migration provided by scaffolds with pores above 300 microm overcomes this effect. An added advantage of the larger pores is a reduction in cell aggregations that develop along the edges of the scaffolds. Ultimately scaffolds with a mean pore size of 325 microm were deemed optimal for bone tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition.

              The aim of this study was to determine the influence of two key scaffold design parameters, void fraction (VF) and pore size, on the attachment, growth, and extracellular matrix deposition by several cell types. Disc-shaped, porous, poly(-lactic acid) (L-PLA) scaffolds were manufactured by the TheriForm solid free-form fabrication process to generate scaffolds with two VF (75% and 90%) and four pore size distributions ( 38 to 150 microm; however, when cultured on scaffolds with pores formed with salt particles of <38 microm, MVEC formed a multilayered lining on the scaffolds surface. Culture data from scaffolds with a 75% VF suggests that the structural features were unsuitable for tissue formation. Hence, there were limits of acceptable scaffold architecture (VF, pore size) that modulated in vitro cellular responses.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                26 June 2022
                2022
                26 June 2022
                : 13
                : 6
                : 14368-14381
                Affiliations
                [a ]Department of Periodontitis, Affiliated Haikou Hospital, Xiangya Medical School, Central South University • Hainan Provincial Stomatology Centre; , Haikou, Hainan, China
                [b ]Department of Oral Implantation, Affiliated Haikou Hospital, Xiangya Medical School, Central South University Hainan Provincial Stomatology Centre; , Haikou, Hainan, China
                Author notes
                CONTACT Pu Xu hnxupu@ 123456163.com Department of Oral Implantation, Affiliated Haikou Hospital, Xiangya Medical School, Central South University Hainan Provincial Stomatology Centre; , No. 43 Renmin Avenue, Haikou, Hainan 570208, China
                Article
                2085394
                10.1080/21655979.2022.2085394
                9342380
                35758269
                80d7176d-2fc8-487f-b7c3-f04a7ed8bbcd
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 8, Tables: 1, References: 40, Pages: 14
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                nanopearl powder,chitosan,hyaluronic acid,recombinant human bone morphogenetic protein,composite artificial bone

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content301

                Most referenced authors665