2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic and proteomic-based analysis of the mechanisms by which drought and salt stresses affect the quality of Isatidis Folium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isatidis Folium, derived from the dried leaves of Isatis indigotica Fort., has been used for centuries as a traditional Chinese herb with antibacterial and antiviral properties. However, heterogeneity in cultivation conditions and climatic variations poses challenges to accurately and effectively evaluate its quality. Current quality control methods cannot provide a comprehensive and effective identification of herbal quality and preparation efficacy. This study aimed to investigate the impact of different environmental factors on the biosynthesis and accumulation of medicinal components and identify biomarker genes and functional proteins associated with abiotic stress responses of  Isatis indigotica Fort. We proposed evaluating the quality of Isatidis Folium based on multi-component quantitative analysis and integrating transcriptomic, proteomic, and physiological indicators to elucidate the mechanisms of herbal quality variation. The results revealed that abiotic stress conditions significantly altered the levels of bioactive constituents, physiological indices, and specific genes and proteins. Notably, biological pathways such as porphyrin metabolism, photosynthesis, and carbon fixation by photosynthetic organisms were implicated in phototoxicity within the photosystem under abiotic stresses. Biological pathways related to indole metabolism, specifically phenylalanine, tyrosine, and tryptophan synthesis, tryptophan metabolism, and indole alkaloid synthesis, were recognized as critical regulatory networks modulating indole alkaloid content. Candidate biomarkers such as HemB, PsbB, RBS2, RIBA2, TRPA, and TRPB were identified as potential factors of quality deterioration under adverse conditions. Based on the integration of chemical analysis and multi-omics techniques, a new hierarchical quality control scenario for Isatidis Folium was finally proposed, providing a research foundation for the innovation-driven development of traditional Chinese medicine.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Universal sample preparation method for proteome analysis.

            We describe a method, filter-aided sample preparation (FASP), which combines the advantages of in-gel and in-solution digestion for mass spectrometry-based proteomics. We completely solubilized the proteome in sodium dodecyl sulfate, which we then exchanged by urea on a standard filtration device. Peptides eluted after digestion on the filter were pure, allowing single-run analyses of organelles and an unprecedented depth of proteome coverage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              iProX: an integrated proteome resource

              Abstract Sharing of research data in public repositories has become best practice in academia. With the accumulation of massive data, network bandwidth and storage requirements are rapidly increasing. The ProteomeXchange (PX) consortium implements a mode of centralized metadata and distributed raw data management, which promotes effective data sharing. To facilitate open access of proteome data worldwide, we have developed the integrated proteome resource iProX (http://www.iprox.org) as a public platform for collecting and sharing raw data, analysis results and metadata obtained from proteomics experiments. The iProX repository employs a web-based proteome data submission process and open sharing of mass spectrometry-based proteomics datasets. Also, it deploys extensive controlled vocabularies and ontologies to annotate proteomics datasets. Users can use a GUI to provide and access data through a fast Aspera-based transfer tool. iProX is a full member of the PX consortium; all released datasets are freely accessible to the public. iProX is based on a high availability architecture and has been deployed as part of the proteomics infrastructure of China, ensuring long-term and stable resource support. iProX will facilitate worldwide data analysis and sharing of proteomics experiments.
                Bookmark

                Author and article information

                Contributors
                xz19560659193@163.com
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                14 March 2025
                14 March 2025
                2025
                : 25
                : 332
                Affiliations
                [1 ]Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, ( https://ror.org/03wnrsb51) Jinan, China
                [2 ]Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, ( https://ror.org/05jb9pq57) Jinan, China
                [3 ]College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, ( https://ror.org/0523y5c19) Jinan, China
                [4 ]Institute of Traditional Chinese Medicine Pharmacology, Shandong Academy of Chinese Medicine, ( https://ror.org/05mmjqp23) Jinan, China
                Article
                6309
                10.1186/s12870-025-06309-z
                11907893
                40087613
                80d37937-07a9-4530-ac25-0388c4d29870
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 12 November 2024
                : 26 February 2025
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2025

                Plant science & Botany
                isatidis folium,stress,herbal quality,multi-component quantitative analysis,transcriptomic,proteomic,biological mechanism

                Comments

                Comment on this article