7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of the Genetic Depletion of Polysialyltransferases on the Structure and Connectivity of Interneurons in the Adult Prefrontal Cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polysialic acid (polySia) is a complex sugar that in the nervous system appears mainly as a posttranslational modification of the neural cell adhesion molecule (NCAM). PolySia plays important roles during brain development, but also in its plasticity during adulthood. Two polysialyltransferases (polyST), ST8SIA2 and ST8SIA4, are involved in the synthesis and attachment of polySia. Both polyST are relevant for developmental migration of cortical interneurons and their establishment in the prefrontal cortex (PFC). In contrast, only ST8SIA4 appears to be important for the structural plasticity of a subpopulation of cortical interneurons in the adult. Interestingly, ST8SIA2 and NCAM are candidate genes for schizophrenia, a disorder in which interneuronal circuits are altered. However, there is still no data on the effects of polyST depletion on the dendritic structure or the connectivity of cortical interneurons. Here, we studied the contribution of each polyST on these parameters in the medial PFC (mPFC) of polyST knock-out mice with GAD67-GFP-labeled interneurons. Genetic depletion of ST8SIA4, but not ST8SIA2, resulted in a decrease in the complexity of the dendritic arbor of interneurons. In contrast, ablation of either of the two polyST induced a decrease in the density of parvalbumin (PV) expressing perisomatic puncta on pyramidal neurons. Thus, the depletion of each polyST results in similar impairments of not only developmental migration but also efferent synaptic connectivity of interneurons. In contrast, the loss of ST8SIA4 has a unique effect on dendritic structure, hence on afferent connectivity, suggesting differential and independent contributions of each polyST to neuritogenesis and synaptogenesis.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Dendritic organization in the neurons of the visual and motor cortices of the cat.

          D SHOLL (1953)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interneuron dysfunction in psychiatric disorders.

            Schizophrenia, autism and intellectual disabilities are best understood as spectrums of diseases that have broad sets of causes. However, it is becoming evident that these conditions also have overlapping phenotypes and genetics, which is suggestive of common deficits. In this context, the idea that the disruption of inhibitory circuits might be responsible for some of the clinical features of these disorders is gaining support. Recent studies in animal models demonstrate that the molecular basis of such disruption is linked to specific defects in the development and function of interneurons - the cells that are responsible for establishing inhibitory circuits in the brain. These insights are leading to a better understanding of the causes of schizophrenia, autism and intellectual disabilities, and may contribute to the development of more-effective therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse.

              Gamma-aminobutyric acid (GABA)ergic neurons in the central nervous system regulate the activity of other neurons and play a crucial role in information processing. To assist an advance in the research of GABAergic neurons, here we produced two lines of glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mouse. The distribution pattern of GFP-positive somata was the same as that of the GAD67 in situ hybridization signal in the central nervous system. We encountered neither any apparent ectopic GFP expression in GAD67-negative cells nor any apparent lack of GFP expression in GAD67-positive neurons in the two GAD67-GFP knock-in mouse lines. The timing of GFP expression also paralleled that of GAD67 expression. Hence, we constructed a map of GFP distribution in the knock-in mouse brain. Moreover, we used the knock-in mice to investigate the colocalization of GFP with NeuN, calretinin (CR), parvalbumin (PV), and somatostatin (SS) in the frontal motor cortex. The proportion of GFP-positive cells among NeuN-positive cells (neocortical neurons) was approximately 19.5%. All the CR-, PV-, and SS-positive cells appeared positive for GFP. The CR-, PV, and SS-positive cells emitted GFP fluorescence at various intensities characteristics to them. The proportions of CR-, PV-, and SS-positive cells among GFP-positive cells were 13.9%, 40.1%, and 23.4%, respectively. Thus, the three subtypes of GABAergic neurons accounted for 77.4% of the GFP-positive cells. They accounted for 6.5% in layer I. In accord with unidentified GFP-positive cells, many medium-sized spherical somata emitting intense GFP fluorescence were observed in layer I. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                06 February 2019
                2019
                : 13
                : 6
                Affiliations
                [1] 1Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València , Valencia, Spain
                [2] 2Institute of Clinical Biochemistry, Hannover Medical School , Hannover, Germany
                [3] 3Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM): Spanish National Network for Research in Mental Health , Madrid, Spain
                [4] 4Fundación Investigación Hospital Clínico de Valencia, INCLIVA , Valencia, Spain
                Author notes

                Edited by: Alberto Munoz, Complutense University of Madrid, Spain

                Reviewed by: Jon I. Arellano, Yale University, United States; Guillermo Gonzalez-Burgos, University of Pittsburgh, United States

                *Correspondence: Juan Nacher nacher@ 123456uv.es
                Article
                10.3389/fnana.2019.00006
                6372547
                30787870
                80c450ff-d824-4870-a0d1-09c4bc74ef61
                Copyright © 2019 Curto, Alcaide, Röckle, Hildebrandt and Nacher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 October 2018
                : 21 January 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 42, Pages: 10, Words: 6279
                Funding
                Funded by: Ministerio de Economía, Industria y Competitividad, Gobierno de España 10.13039/501100010198
                Categories
                Neuroscience
                Original Research

                Neurosciences
                polysialic acid (polysia),interneuron,basket cell,polysialyltransferases,prefrontal cortex,dendritic arborization

                Comments

                Comment on this article