20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Systematic Review of Methods and Procedures Used in Ecological Momentary Assessments of Diet and Physical Activity Research in Youth: An Adapted STROBE Checklist for Reporting EMA Studies (CREMAS)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ecological momentary assessment (EMA) is a method of collecting real-time data based on careful timing, repeated measures, and observations that take place in a participant’s typical environment. Due to methodological advantages and rapid advancement in mobile technologies in recent years, more studies have adopted EMA in addressing topics of nutrition and physical activity in youth.

          Objective

          The aim of this systematic review is to describe EMA methodology that has been used in studies addressing nutrition and physical activity in youth and provide a comprehensive checklist for reporting EMA studies.

          Methods

          Thirteen studies were reviewed and analyzed for the following 5 areas of EMA methodology: (1) sampling and measures, (2) schedule, (3) technology and administration, (4) prompting strategy, and (5) response and compliance.

          Results

          Results of this review showed a wide variability in the design and reporting of EMA studies in nutrition and physical activity among youth. The majority of studies (69%) monitored their participants during one period of time, although the monitoring period ranged from 4 to 14 days, and EMA surveys ranged from 2 to 68 times per day. More than half (54%) of the studies employed some type of electronic technology. Most (85%) of the studies used interval-contingent prompting strategy. For studies that utilized electronic devices with interval-contingent prompting strategy, none reported the actual number of EMA prompts received by participants out of the intended number of prompts. About half (46%) of the studies failed to report information about EMA compliance rates. For those who reported, compliance rates ranged from 44-96%, with an average of 71%.

          Conclusions

          Findings from this review suggest that in order to identify best practices for EMA methodology in nutrition and physical activity research among youth, more standardized EMA reporting is needed. Missing the key information about EMA design features and participant compliance might lead to misinterpretation of results. Future nutrition and physical activity EMA studies need to be more rigorous and thorough in descriptions of methodology and results. A reporting checklist was developed with the goal of enhancing reliability, efficacy, and overall interpretation of the findings for future studies that use EMAs.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

          Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological momentary assessment.

            Assessment in clinical psychology typically relies on global retrospective self-reports collected at research or clinic visits, which are limited by recall bias and are not well suited to address how behavior changes over time and across contexts. Ecological momentary assessment (EMA) involves repeated sampling of subjects' current behaviors and experiences in real time, in subjects' natural environments. EMA aims to minimize recall bias, maximize ecological validity, and allow study of microprocesses that influence behavior in real-world contexts. EMA studies assess particular events in subjects' lives or assess subjects at periodic intervals, often by random time sampling, using technologies ranging from written diaries and telephones to electronic diaries and physiological sensors. We discuss the rationale for EMA, EMA designs, methodological and practical issues, and comparisons of EMA and recall data. EMA holds unique promise to advance the science and practice of clinical psychology by shedding light on the dynamics of behavior in real-world settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The use of multiple imputation for the analysis of missing data.

              This article provides a comprehensive review of multiple imputation (MI), a technique for analyzing data sets with missing values. Formally, MI is the process of replacing each missing data point with a set of m > 1 plausible values to generate m complete data sets. These complete data sets are then analyzed by standard statistical software, and the results combined, to give parameter estimates and standard errors that take into account the uncertainty due to the missing data values. This article introduces the idea behind MI, discusses the advantages of MI over existing techniques for addressing missing data, describes how to do MI for real problems, reviews the software available to implement MI, and discusses the results of a simulation study aimed at finding out how assumptions regarding the imputation model affect the parameter estimates provided by MI.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                June 2016
                21 June 2016
                : 18
                : 6
                : e151
                Affiliations
                [1] 1University of Texas MD Anderson Cancer Center Department of Behavioral Science Houston, TXUnited States
                [2] 2University of Alabama, Birmingham Birmingham, ALUnited States
                [3] 3University of Southern California Department of Preventive Medicine Los Angeles, CAUnited States
                [4] 4Arizona State University School of Nutrition and Health Promotion Phoenix, AZUnited States
                Author notes
                Corresponding Author: Meg Bruening Meg.Bruening@ 123456asu.edu
                Author information
                http://orcid.org/0000-0002-9384-336X
                http://orcid.org/0000-0002-4129-3829
                http://orcid.org/0000-0002-8301-8040
                Article
                v18i6e151
                10.2196/jmir.4954
                4933800
                27328833
                8042f87e-bae0-45ff-b618-1db9af1fb87e
                ©Yue Liao, Kara Skelton, Genevieve Dunton, Meg Bruening. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 21.06.2016.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 17 July 2015
                : 23 October 2015
                : 15 March 2016
                : 13 April 2016
                Categories
                Original Paper
                Original Paper

                Medicine
                ecological momentary assessment,nutrition,physical activity,youth,systematic review,reporting checklist

                Comments

                Comment on this article