11
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Vegetation as a Mitigating Factor in the Urban Context

      , , ,
      Sustainability
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is known that the urban environment amplifies the effects of climate change, sometimes with disastrous consequences that put people at risk. These aspects can be affected by urban vegetation and planting design but, while there are thousands of papers related to the effects of climate change, a relatively limited number of them are directly aimed at investigating the role of vegetation as a mitigating factor in the urban context. This paper focuses on reviewing the research on the role of urban vegetation in alleviating the adverse conditions of the urban environment in order to provide some practical guidelines to be applied by city planners. Through an analysis of the documents found in Scopus, Web of Science, and Google Scholar using urban vegetation and climate change-related keywords we selected five major issues related to the urban environment: (1) particulate matter, (2) gaseous pollution, (3) noise pollution, (4) water runoff, (5) urban heat island effect. The analysis of existing knowledge reported here indicates that the roles of urban vegetation on the adverse effect of climate change could not be simply deemed positive or negative, because the role of urban green is also strongly linked to the structure, composition, and distribution of vegetation, as well as to the criteria used for management. Therefore, it could help to better understand the roles of urban green as a complex system and provide the foundation for future studies.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE).

          Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day). Particulate matter air pollution contributes to lung cancer incidence in Europe. European Community's Seventh Framework Programme. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? ☆

            This paper investigates the correlation between the high level of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) lethality and the atmospheric pollution in Northern Italy. Indeed, Lombardy and Emilia Romagna are Italian regions with both the highest level of virus lethality in the world and one of Europe’s most polluted area. Based on this correlation, this paper analyzes the possible link between pollution and the development of acute respiratory distress syndrome and eventually death. We provide evidence that people living in an area with high levels of pollutant are more prone to develop chronic respiratory conditions and suitable to any infective agent. Moreover, a prolonged exposure to air pollution leads to a chronic inflammatory stimulus, even in young and healthy subjects. We conclude that the high level of pollution in Northern Italy should be considered an additional co-factor of the high level of lethality recorded in that area.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Air pollution removal by urban trees and shrubs in the United States

                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                May 2020
                May 22 2020
                : 12
                : 10
                : 4247
                Article
                10.3390/su12104247
                80261f43-f61d-4aca-80e3-dd3a72bed32f
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article