84
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fumigant, Contact, and Repellent Activities of Essential Oils Against the Darkling Beetle, Alphitobius diaperinus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fumigant, contact, and repellent activities of four essential oils extracted from Citrus limonum (Sapindales: Rutaceae), Litsea cubeba (Laurales: Lauraceae), Cinnamomum cassia, and Allium sativum L. (Asparagales: Alliaceae) against 6th instars and adults of the darkling beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), one of the main pests of materials and products of Juncus effuses L. (Poales: Juncaceae) during the storage period, were assayed, and chemical ingredients were analyzed with gas chromatography-mass spectrometry in this study. While the major ingredients found in C. limonum and C. cassia were limonene and (E)- cinnamaldehyde, the main constituents of L. cubea were D-limonene, (E)-3,7- dimethyl-,2,6- octadienal, (Z)-3,7- dimethyl- ,2 ,6- octadienal, and diallyl disulphide (18.20%), while the main constituents of and A. sativum were di-2-propenyl trisulfide and di-2- propenyl tetrasulfide. The fumigation activities of A. sativum and C. limonum on A. diaperinus adults were better than those of the other two essential oilss. The toxicities of A. sativum and C. limonum were almost equitoxic at 96 hr after treatment. Essential oils from Allium sativum and L. cubeba also showed good contact activities from 24 hr to 48 hr, and toxicities were almost equitoxic 48 hr post-treatment. The repellent activities of A. sativum and L. cubeba oils on 6th instars were also observed, showing repellence indexes of 90.4% and 88.9% at 12 hr after treatment, respectively. The effects of A. sativum on AChE activity of 6th instars of A. diaperinus were strongest compared to the other essential oils, followed by C. limonum, L. cubeba, and C. cassia. These results suggest that the essential oils of C. limonum and A. sativum could serve as effective control agents of A. diaperinus.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity.

          A comparative study was conducted to assess the contact and fumigant toxicities of eleven monoterpenes on two important stored products insects--, Sitophilus oryzae, the rice weevil, and Tribolium castaneum, the rust red flour beetle. The monoterpenes included: camphene, (+)-camphor, (-)-carvone, 1-8-cineole, cuminaldehyde, (L: )-fenchone, geraniol, (-)-limonene, (-)-linalool, (-)-menthol, and myrcene. The inhibitory effect of these compounds on acetylcholinesterase (AChE) activity also was examined to explore their possible mode(s) of toxic action. Although most of the compounds were toxic to S. oryzae and T. castaneum, their toxicity varied with insect species and with the bioassay test. In contact toxicity assays, (-)-carvone, geraniol, and cuminaldehyde showed the highest toxicity against S. oryzae with LC(50) values of 28.17, 28.76, and 42.08 microg/cm(2), respectively. (-)-Carvone (LC(50) = 19.80 microg/cm(2)) was the most effective compound against T. castaneum, followed by cuminaldehyde (LC(50) = 32.59 microg/cm(2)). In contrast, camphene, (+)-camphor, 1-8-cineole, and myrcene had weak activity against both insects (i.e., LC(50) values above 500 microg/cm(2)). In fumigant toxicity assays, 1-8-cineole was the most effective against S. oryzae and T. castaneum (LC(50) = 14.19 and 17.16 mg/l, respectively). Structure-toxicity investigations revealed that (-)-carvone--, a ketone--, had the highest contact toxicity against the both insects. 1-8-Cineole--, an ether--, was the most potent fumigant against both insects. In vitro inhibition studies of AChE from adults of S. oryzae showed that cuminaldehyde most effectively inhibited enzyme activity at the two tested concentrations (0.01 and 0.05 M) followed by 1-8-cineole, (-)-limonene, and (L)-fenchone. 1-8-Cineole was the most potent inhibitor of AChE activity from T. castaneum larvae followed by (-)-carvone and (-)-limonene. The results of the present study indicate that (-)-carvone, 1,8-cineole, cuminaldehyde, (L)-fenchone, and (-)-limonene could be effective biocontrol agents against S. oryzae and T. castaneum.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative toxicity of essential oils of Litsea pungens and Litsea cubeba and blends of their major constituents against the cabbage looper, Trichoplusia ni.

            Contact toxicity of essential oils of Litsea pungens Hemsl. and L. cubeba (Lour.) Pers. (Lauraceae) and of blends of their major constituents was assessed against third-instar Trichoplusia ni larvae via topical application. Both oils showed moderate activity against T. ni larvae with LD(50) values of 87.1 and 112.5 microg/larva, respectively. 1,8-Cineole from the essential oil of L. pungens and gamma-terpinene from the oil of L. cubeba accounted for much of the toxicity of the oils to T. ni larvae. The toxicity of blends of selected constituents indicated a synergistic effect among putatively active and inactive constituents, with the presence of all constituents necessary for full toxicity of the natural oils. The results show that essential oils of L. pungens and L. cubeba and some of their constituents have potential for development as botanical insecticides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica).

              We evaluated the insecticidal and acetylcholine esterase (AChE) inhibition activity of 11 Apiaceae plant essential oils and their constituents in adult male and female Blattella germanica. Of the 11 Apiaceae plant essential oils tested, dill (Anethum graveolens), carvi (Carum carvi), and cumin (Cuminum cyminum) demonstrated >90% fumigant toxicity against adult male German cockroaches at a concentration of 5 mg/filter paper. In a contact toxicity test, dill (Anethum graveolens), carvi (Carum carvi), cumin (Cuminum cyminum), and ajowan (Trachyspermum ammi) produced strong insecticidal activity against adult male and female German cockroaches. Among the test compounds, (S)-(+)-carvone, 1,8-cineole, trans-dihydrocarvone, cuminaldehyde, trans-anethole, p-cymene, and γ-terpinene demonstrated strong fumigant toxicity against adult male and female B. germanica. In a contact toxicity test, carveol, cuminaldehyde, (S)-(+)-carvone, trans-anethole, thymol, and p-cymene showed strong contact toxicity against adult male and female B. germanica. IC(50) values of α-pinene, carvacrol, and dihydrocarvone against female AChE were 0.28, 0.17, and 0.78 mg/mL, respectively. The toxicity of the blends of constituents identified in 4 active oils indicated that carvone, cuminaldehyde, and thymol were major contributors to the fumigant activity or contact toxicity of the artificial blend.
                Bookmark

                Author and article information

                Journal
                J Insect Sci
                J. Insect Sci
                insc
                Journal of Insect Science
                University of Wisconsin Library
                1536-2442
                2014
                30 May 2014
                : 14
                : 75
                Affiliations
                [ 1 ]Sichuan Agricultural University, Biorational Pesticide Research Lab, 611130, Chengdu, China
                [ 2 ]Sichuan Agricultural University, College of Resources and Environment, 611130, Chengdu, China
                Author notes
                Article
                10.1673/031.014.75
                4207510
                7fc5e33f-f367-450c-abb4-5226b92661a5
                © 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 July 2012
                : 8 March 2014
                Page count
                Pages: 11
                Categories
                Article

                Entomology
                ache activity,fumigant toxicity,repellent toxicity
                Entomology
                ache activity, fumigant toxicity, repellent toxicity

                Comments

                Comment on this article