5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel strategies for cancer immunotherapy: counter-immunoediting therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.

          Related collections

          Most cited references389

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer

            Nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint-inhibitor antibody, disrupts PD-1-mediated signaling and may restore antitumor immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hallmarks of Cancer: New Dimensions

              The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
                Bookmark

                Author and article information

                Contributors
                sunqian923@126.com
                renxiubao@tjmuch.com
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                13 April 2023
                13 April 2023
                2023
                : 16
                : 38
                Affiliations
                [1 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Department of Immunology, , Tianjin Medical University Cancer Institute and Hospital, ; 300060 Tianjin, China
                [2 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, ; 300060 Tianjin, China
                [3 ]Key Laboratory of Cancer Immunology and Biotherapy, 300060 Tianjin, China
                [4 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Key Laboratory of Cancer Prevention and Therapy, ; 300060 Tianjin, China
                [5 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Tianjin’s Clinical Research Center for Cancer, ; 300060 Tianjin, China
                [6 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Department of Biotherapy, , Tianjin Medical University Cancer Institute and Hospital, ; 300060 Tianjin, China
                Article
                1430
                10.1186/s13045-023-01430-8
                10099030
                37055849
                7fae1003-3254-4b14-9b94-b06fe542bd68
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 January 2023
                : 21 March 2023
                Funding
                Funded by: National Key R&D Program of China
                Award ID: 2018YFC1313400
                Award Recipient :
                Funded by: Tianjin Natural Science Foundation
                Award ID: 19JCYBJC27600 and 18JCQNJC81300
                Award ID: 19JCYBJC27600 and 18JCQNJC81300
                Award Recipient :
                Funded by: National Natural Science Foundation of China
                Award ID: U20A20375, 81974416, 81872166 and 81802873
                Award ID: U20A20375, 81974416, 81872166 and 81802873
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2023

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article