9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The DANTE trial protocol: a randomised phase III trial to evaluate the Duration of ANti-PD-1 monoclonal antibody Treatment in patients with metastatic mElanoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Immunotherapy is revolutionising the treatment of patients diagnosed with melanoma and other cancers. The first immune checkpoint inhibitor, ipilimumab (targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)), showed a survival advantage over standard chemotherapy. Subsequently the anti-programmed cell death protein 1 (PD-1) antibodies, nivolumab and pembrolizumab were shown to be more effective than ipilimumab. Ipilimumab combined with nivolumab gives an incremental gain in overall survival compared with nivolumab alone but increases the risk of severe, potentially life-threatening toxicities. In contrast to ipilimumab monotherapy, anti-PD-1 antibodies are licensed to be continued until disease progression. Follow-up of patients recruited to the first trials evaluating 2 years of pembrolizumab showed that three-quarters of responding patients continue responding after stopping treatment. Suggestive of early response, we hypothesised that continuing anti-PD-1 treatment beyond 1 year in progression-free patients may be unnecessary and so designed the DANTE trial.

          Methods

          DANTE is a multicentre, randomised, phase III, non-inferiority trial to evaluate the duration of anti-PD-1 therapy in patients with metastatic (unresectable stage III and stage IV) melanoma. It uses a two-stage recruitment strategy, registering patients before they complete 1 year of first-line anti-PD-1 +/− CTLA-4 therapy and randomising eligible patients who have received 12 months of treatment and are progression-free at 1 year. At randomisation, 1208 patients are assigned (1:1) to either 1) continue anti-PD-1 treatment until disease progression/ unacceptable toxicity/ for at least 2 years in the absence of disease progression/ unacceptable toxicity or 2) to stop treatment. Randomisation stratifies for baseline prognostic factors. The primary outcome is progression-free survival at 3, 6, 9 and 12 months and then, 6-monthly for up to 4-years. Secondary outcomes collected at all timepoints include overall survival, response-rate and duration and safety, with quality of life and cost-effectiveness outcomes collected 3-monthly for up to 18-months. Sub-studies include a qualitative analysis of patient acceptance of randomisation and sample collection to inform future translational studies into response/ toxicity biomarkers.

          Discussion

          DANTE is a unique prospective trial investigating the optimal duration of anti-PD-1 therapy in metastatic melanoma patients. Outcomes will inform future use of these high burden drugs.

          Trial registration

          ISRCTN15837212, 31 July 2018. 

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12885-021-08509-w.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L)

            Purpose This article introduces the new 5-level EQ-5D (EQ-5D-5L) health status measure. Methods EQ-5D currently measures health using three levels of severity in five dimensions. A EuroQol Group task force was established to find ways of improving the instrument’s sensitivity and reducing ceiling effects by increasing the number of severity levels. The study was performed in the United Kingdom and Spain. Severity labels for 5 levels in each dimension were identified using response scaling. Focus groups were used to investigate the face and content validity of the new versions, including hypothetical health states generated from those versions. Results Selecting labels at approximately the 25th, 50th, and 75th centiles produced two alternative 5-level versions. Focus group work showed a slight preference for the wording ‘slight-moderate-severe’ problems, with anchors of ‘no problems’ and ‘unable to do’ in the EQ-5D functional dimensions. Similar wording was used in the Pain/Discomfort and Anxiety/Depression dimensions. Hypothetical health states were well understood though participants stressed the need for the internal coherence of health states. Conclusions A 5-level version of the EQ-5D has been developed by the EuroQol Group. Further testing is required to determine whether the new version improves sensitivity and reduces ceiling effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

              An improvement in overall survival among patients with metastatic melanoma has been an elusive goal. In this phase 3 study, ipilimumab--which blocks cytotoxic T-lymphocyte-associated antigen 4 to potentiate an antitumor T-cell response--administered with or without a glycoprotein 100 (gp100) peptide vaccine was compared with gp100 alone in patients with previously treated metastatic melanoma. A total of 676 HLA-A*0201-positive patients with unresectable stage III or IV melanoma, whose disease had progressed while they were receiving therapy for metastatic disease, were randomly assigned, in a 3:1:1 ratio, to receive ipilimumab plus gp100 (403 patients), ipilimumab alone (137), or gp100 alone (136). Ipilimumab, at a dose of 3 mg per kilogram of body weight, was administered with or without gp100 every 3 weeks for up to four treatments (induction). Eligible patients could receive reinduction therapy. The primary end point was overall survival. The median overall survival was 10.0 months among patients receiving ipilimumab plus gp100, as compared with 6.4 months among patients receiving gp100 alone (hazard ratio for death, 0.68; P<0.001). The median overall survival with ipilimumab alone was 10.1 months (hazard ratio for death in the comparison with gp100 alone, 0.66; P=0.003). No difference in overall survival was detected between the ipilimumab groups (hazard ratio with ipilimumab plus gp100, 1.04; P=0.76). Grade 3 or 4 immune-related adverse events occurred in 10 to 15% of patients treated with ipilimumab and in 3% treated with gp100 alone. There were 14 deaths related to the study drugs (2.1%), and 7 were associated with immune-related adverse events. Ipilimumab, with or without a gp100 peptide vaccine, as compared with gp100 alone, improved overall survival in patients with previously treated metastatic melanoma. Adverse events can be severe, long-lasting, or both, but most are reversible with appropriate treatment. (Funded by Medarex and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00094653.)
                Bookmark

                Author and article information

                Contributors
                s.danson@sheffield.ac.uk
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                1 July 2021
                1 July 2021
                2021
                : 21
                : 761
                Affiliations
                [1 ]GRID grid.415967.8, ISNI 0000 0000 9965 1030, Leeds Teaching Hospitals NHS Trust, ; Leeds, UK
                [2 ]GRID grid.24029.3d, ISNI 0000 0004 0383 8386, Cambridge University Hospitals NHS Foundation Trust, ; Cambridge, UK
                [3 ]GRID grid.9909.9, ISNI 0000 0004 1936 8403, University of Leeds, ; Leeds, UK
                [4 ]Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, Leeds, UK
                [5 ]GRID grid.1006.7, ISNI 0000 0001 0462 7212, Newcastle University, ; Newcastle upon Tyne, UK
                [6 ]GRID grid.5491.9, ISNI 0000 0004 1936 9297, University of Southampton, ; Southampton, UK
                [7 ]GRID grid.443984.6, Leeds Institute of Medical Research at St James’s University Hospital, ; Leeds, UK
                [8 ]GRID grid.5335.0, ISNI 0000000121885934, University of Cambridge, ; Cambridge, UK
                [9 ]GRID grid.31410.37, ISNI 0000 0000 9422 8284, Sheffield Teaching Hospitals NHS Foundation Trust , ; Sheffield, UK
                [10 ]GRID grid.11835.3e, ISNI 0000 0004 1936 9262, University of Sheffield, ; Sheffield, UK
                [11 ]Melanoma Focus, Cambridge, UK
                Author information
                http://orcid.org/0000-0002-3593-2890
                Article
                8509
                10.1186/s12885-021-08509-w
                8246129
                34210290
                7f26dc06-b1e0-4b25-8fb2-3d0458c87854
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 January 2021
                : 14 June 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000664, Health Technology Assessment Programme;
                Award ID: 15/57/66
                Award Recipient :
                Categories
                Study Protocol
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                immunotherapy,checkpoint inhibitor,anti-pd-1,metastatic melanoma,schedule,efficacy,safety,quality of life

                Comments

                Comment on this article