13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Audiovisual Multisensory Integration and Evoked Potentials in Young Adults With and Without Attention-Deficit/Hyperactivity Disorder

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to assess how young adults with attention-deficit/hyperactivity disorder (ADHD) process audiovisual (AV) multisensory stimuli using behavioral and neurological measures. Adults with a clinical diagnosis of ADHD ( n = 10) and neurotypical controls ( n = 11) completed a simple response time task, consisting of auditory, visual, and AV multisensory conditions. Continuous 64-electrode electroencephalography (EEG) was collected to assess neurological responses to each condition. The AV multisensory condition resulted in the shortest response times for both populations. Analysis using the race model (Miller, 1982) demonstrated that those with ADHD had violation of the race model earlier in the response, which may be a marker for impulsivity. EEG analysis revealed that both groups had early multisensory integration (MSI) occur following multisensory stimulus onset. There were also significant group differences in event-related potentials (ERPs) in frontal, parietal, and occipital brain regions, which are regions reported to be altered in those with ADHD. This study presents results examining multisensory processing in the population of adults with ADHD, and can be used as a foundation for future ADHD research using developmental research designs as well as the development of novel technological supports.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder.

          Various anatomic brain abnormalities have been reported for attention-deficit/hyperactivity disorder (ADHD), with varying methods, small samples, cross-sectional designs, and without accounting for stimulant drug exposure. To compare regional brain volumes at initial scan and their change over time in medicated and previously unmedicated male and female patients with ADHD and healthy controls. Case-control study conducted from 1991-2001 at the National Institute of Mental Health, Bethesda, Md, of 152 children and adolescents with ADHD (age range, 5-18 years) and 139 age- and sex-matched controls (age range, 4.5-19 years) recruited from the local community, who contributed 544 anatomic magnetic resonance images. Using completely automated methods, initial volumes and prospective age-related changes of total cerebrum, cerebellum, gray and white matter for the 4 major lobes, and caudate nucleus of the brain were compared in patients and controls. On initial scan, patients with ADHD had significantly smaller brain volumes in all regions, even after adjustment for significant covariates. This global difference was reflected in smaller total cerebral volumes (-3.2%, adjusted F(1,280) = 8.30, P =.004) and in significantly smaller cerebellar volumes (-3.5%, adjusted F(1,280) = 12.29, P =.001). Compared with controls, previously unmedicated children with ADHD demonstrated significantly smaller total cerebral volumes (overall F(2,288) = 6.65; all pairwise comparisons Bonferroni corrected, -5.8%; P =.002) and cerebellar volumes (-6.2%, F( 2,288) = 8.97, P<.001). Unmedicated children with ADHD also exhibited strikingly smaller total white matter volumes (F(2,288) = 11.65) compared with controls (-10.7%, P<.001) and with medicated children with ADHD (-8.9%, P<.001). Volumetric abnormalities persisted with age in total and regional cerebral measures (P =.002) and in the cerebellum (P =.003). Caudate nucleus volumes were initially abnormal for patients with ADHD (P =.05), but diagnostic differences disappeared as caudate volumes decreased for patients and controls during adolescence. Results were comparable for male and female patients on all measures. Frontal and temporal gray matter, caudate, and cerebellar volumes correlated significantly with parent- and clinician-rated severity measures within the ADHD sample (Pearson coefficients between -0.16 and -0.26; all P values were <.05). Developmental trajectories for all structures, except caudate, remain roughly parallel for patients and controls during childhood and adolescence, suggesting that genetic and/or early environmental influences on brain development in ADHD are fixed, nonprogressive, and unrelated to stimulant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study.

            The aim of this study was (1) to provide behavioral evidence for multimodal feature integration in an object recognition task in humans and (2) to characterize the processing stages and the neural structures where multisensory interactions take place. Event-related potentials (ERPs) were recorded from 30 scalp electrodes while subjects performed a forced-choice reaction-time categorization task: At each trial, the subjects had to indicate which of two objects was presented by pressing one of two keys. The two objects were defined by auditory features alone, visual features alone, or the combination of auditory and visual features. Subjects were more accurate and rapid at identifying multimodal than unimodal objects. Spatiotemporal analysis of ERPs and scalp current densities revealed several auditory-visual interaction components temporally, spatially, and functionally distinct before 200 msec poststimulus. The effects observed were (1) in visual areas, new neural activities (as early as 40 msec poststimulus) and modulation (amplitude decrease) of the N185 wave to unimodal visual stimulus, (2) in the auditory cortex, modulation (amplitude increase) of subcomponents of the unimodal auditory N1 wave around 90 to 110 msec, and (3) new neural activity over the right fronto-temporal area (140 to 165 msec). Furthermore, when the subjects were separated into two groups according to their dominant modality to perform the task in unimodal conditions (shortest reaction time criteria), the integration effects were found to be similar for the two groups over the nonspecific fronto-temporal areas, but they clearly differed in the sensory-specific cortices, affecting predominantly the sensory areas of the nondominant modality. Taken together, the results indicate that multisensory integration is mediated by flexible, highly adaptive physiological processes that can take place very early in the sensory processing chain and operate in both sensory-specific and nonspecific cortical structures in different ways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder.

              Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference=.408, p<.001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                19 March 2019
                2019
                : 13
                : 95
                Affiliations
                [1] 1Faculty of Health Sciences, University of Ontario Institute of Technology , Oshawa, ON, Canada
                [2] 2Faculty of Kinesiology and Recreation Management, University of Manitoba , Winnipeg, MB, Canada
                [3] 3Health, Leisure & Human Performance Institute, University of Manitoba , Winnipeg, MB, Canada
                [4] 4Faculty of Health, School of Medicine, Deakin University , Waurn Ponds, VIC, Australia
                Author notes

                Edited by: Jessica A. Turner, Georgia State University, United States

                Reviewed by: Jeroen Stekelenburg, Tilburg University, Netherlands; Cristiano Cuppini, University of Bologna, Italy

                *Correspondence: Bernadette A. Murphy bernadette.murphy@ 123456uoit.ca
                Article
                10.3389/fnhum.2019.00095
                6433696
                30941026
                7f223376-5792-400d-bc3e-e183c4029624
                Copyright © 2019 McCracken, Murphy, Glazebrook, Burkitt, Karellas and Yielder.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2018
                : 28 February 2019
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 37, Pages: 11, Words: 7794
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Categories
                Neuroscience
                Original Research

                Neurosciences
                adhd,multisensory integration,eeg,event-related potentials,response time
                Neurosciences
                adhd, multisensory integration, eeg, event-related potentials, response time

                Comments

                Comment on this article