7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Common Nevus and Skin Cutaneous Melanoma: Prognostic Genes Identified by Gene Co-Expression Network Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin cutaneous melanoma (SCM) is a common malignant tumor of the skin and its pathogenesis still needs to be studied. In this work, we constructed a co-expression network and screened for hub genes by weighted gene co-expression network analysis (WGCNA) using the GSE98394 dataset. The relationship between the mRNA expression of hub genes and the prognosis of patients with melanoma was validated by Gene Expression Profiling Interactive Analysis (GEPIA) database. Furthermore, immunohistochemistry in the Human Protein Atlas was used to validate hub genes and grayscale analysis was performed using ImageJ software. It was found that the yellow module was most significantly associated with the difference between common nevus and SCM, and 13 genes whose expression correlation >0.9 were candidate hub genes. The expression of three genes ( STK26, KCNT2, CASP12) was correlated with the prognosis of SCM. STK26 ( P = 0.0024) and KCNT2 ( P < 0.0001) were significantly different between normal skin and SCM. These three hub genes have potential value as predictors for accurate diagnosis and prognosis of SCM in the future.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Final version of 2009 AJCC melanoma staging and classification.

          To revise the staging system for cutaneous melanoma on the basis of data from an expanded American Joint Committee on Cancer (AJCC) Melanoma Staging Database. The melanoma staging recommendations were made on the basis of a multivariate analysis of 30,946 patients with stages I, II, and III melanoma and 7,972 patients with stage IV melanoma to revise and clarify TNM classifications and stage grouping criteria. Findings and new definitions include the following: (1) in patients with localized melanoma, tumor thickness, mitotic rate (histologically defined as mitoses/mm(2)), and ulceration were the most dominant prognostic factors. (2) Mitotic rate replaces level of invasion as a primary criterion for defining T1b melanomas. (3) Among the 3,307 patients with regional metastases, components that defined the N category were the number of metastatic nodes, tumor burden, and ulceration of the primary melanoma. (4) For staging purposes, all patients with microscopic nodal metastases, regardless of extent of tumor burden, are classified as stage III. Micrometastases detected by immunohistochemistry are specifically included. (5) On the basis of a multivariate analysis of patients with distant metastases, the two dominant components in defining the M category continue to be the site of distant metastases (nonvisceral v lung v all other visceral metastatic sites) and an elevated serum lactate dehydrogenase level. Using an evidence-based approach, revisions to the AJCC melanoma staging system have been made that reflect our improved understanding of this disease. These revisions will be formally incorporated into the seventh edition (2009) of the AJCC Cancer Staging Manual and implemented by early 2010.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual

            Answer questions and earn CME/CNE To update the melanoma staging system of the American Joint Committee on Cancer (AJCC) a large database was assembled comprising >46,000 patients from 10 centers worldwide with stages I, II, and III melanoma diagnosed since 1998. Based on analyses of this new database, the existing seventh edition AJCC stage IV database, and contemporary clinical trial data, the AJCC Melanoma Expert Panel introduced several important changes to the Tumor, Nodes, Metastasis (TNM) classification and stage grouping criteria. Key changes in the eighth edition AJCC Cancer Staging Manual include: 1) tumor thickness measurements to be recorded to the nearest 0.1 mm, not 0.01 mm; 2) definitions of T1a and T1b are revised (T1a, <0.8 mm without ulceration; T1b, 0.8-1.0 mm with or without ulceration or <0.8 mm with ulceration), with mitotic rate no longer a T category criterion; 3) pathological (but not clinical) stage IA is revised to include T1b N0 M0 (formerly pathologic stage IB); 4) the N category descriptors "microscopic" and "macroscopic" for regional node metastasis are redefined as "clinically occult" and "clinically apparent"; 5) prognostic stage III groupings are based on N category criteria and T category criteria (ie, primary tumor thickness and ulceration) and increased from 3 to 4 subgroups (stages IIIA-IIID); 6) definitions of N subcategories are revised, with the presence of microsatellites, satellites, or in-transit metastases now categorized as N1c, N2c, or N3c based on the number of tumor-involved regional lymph nodes, if any; 7) descriptors are added to each M1 subcategory designation for lactate dehydrogenase (LDH) level (LDH elevation no longer upstages to M1c); and 8) a new M1d designation is added for central nervous system metastases. This evidence-based revision of the AJCC melanoma staging system will guide patient treatment, provide better prognostic estimates, and refine stratification of patients entering clinical trials. CA Cancer J Clin 2017;67:472-492. © 2017 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases.

              Inflammatory caspases are essential effectors of inflammation and cell death. Here, we investigated their roles in colitis and colorectal cancer and report a bimodal regulation of intestinal homeostasis, inflammation and tumorigenesis by caspases-1 and -12. Casp1(-/-) mice exhibited defects in mucosal tissue repair and succumbed rapidly after dextran sulfate sodium administration. This phenotype was rescued by administration of exogenous interleukin-18 and was partially reproduced in mice deficient in the inflammasome adaptor ASC. Casp12(-/-) mice, in which the inflammasome is derepressed, were resistant to acute colitis and showed signs of enhanced repair. Together with their increased inflammatory response, the enhanced repair response of Casp12(-/-) mice rendered them more susceptible to colorectal cancer induced by azoxymethane (AOM)+DSS. Taken together, our results indicate that the inflammatory caspases are critical in the induction of inflammation in the gut after injury, which is necessary for tissue repair and maintenance of immune tolerance.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                25 September 2019
                October 2019
                : 10
                : 10
                : 747
                Affiliations
                [1 ]Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China xuyudaniel@ 123456gmail.com (Y.X.); michelle_yan@ 123456fudan.edu.cn (Y.Y.); Zhengbqk@ 123456hotmail.com (B.Z.); yanwj@ 123456fudan.edu.cn (W.Y.); chenyong@ 123456fudan.edu.cn (Y.C.)
                [2 ]Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
                Author notes
                [* ]Correspondence: cmwang1975@ 123456163.com ; Fax: 86-21-64430130
                Author information
                https://orcid.org/0000-0003-0853-3963
                Article
                genes-10-00747
                10.3390/genes10100747
                6826586
                31557882
                7f1c5cd3-effa-4a5a-86ca-95287251d64c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 July 2019
                : 17 September 2019
                Categories
                Article

                skin cutaneous melanoma,common nevus,gse98394,weighted gene co-expression network analysis (wgcna),prognostic genes

                Comments

                Comment on this article