54
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survey of Insomnia and Related Social Psychological Factors Among Medical Staff Involved in the 2019 Novel Coronavirus Disease Outbreak

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The outbreak of the 2019 novel coronavirus disease (COVID-19) not only caused particularly large public health problems, but also caused great psychological distress, especially for medical staff. We aimed to investigate the prevalence rate of insomnia and to confirm the related social psychological factors among medical staff in hospitals during the COVID-19 outbreak.

          Method

          Medical staff members in China were recruited, including frontline medical workers. The questionnaire, administered through the WeChat program, obtained demographic data and asked self-design questions related to the COVID-19 outbreak, insomnia/depressive/anxiety symptoms, and stress-related symptoms. We used a logistic regression analysis to examine the associations between sociodemographic factors and insomnia symptoms.

          Result

          There were a total of 1,563 participants in our study. Five-hundred-and-sixty-four (36.1%) participants had insomnia symptoms according to the Insomnia Severity Index (ISI) (total score ≥ 8). A multiple binary logistic regression model revealed that insomnia symptoms were associated with an education level of high school or below (OR = 2.69, p = 0.042, 95% CI = 1.0–7.0), being a doctor (OR = 0.44, p = 0.007, 95% CI = 0.2–0.8), currently working in an isolation unit (OR = 1.71, p = 0.038, 95% CI = 1.0–2.8), is worried about being infected (OR = 2.30, p < 0.001, 95% CI = 1.6–3.4), perceived lack of helpfulness in terms of psychological support from news or social media with regard to COVID-19 (OR = 2.10, p = 0.001, 95% CI = 1.3–3.3), and having very strong uncertainty regarding effective disease control (OR = 3.30, p = 0.013, 95% CI = 1.3–8.5).

          Conclusion

          Our study found that more than one-third of the medical staff suffered insomnia symptoms during the COVID-19 outbreak. The related factors included education level, an isolation environment, psychological worries about the COVID-19 outbreak, and being a doctor. Interventions for insomnia among medical staff are needed considering the various sociopsychological factors at play in this situation.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus outbreak of global health concern

          In December, 2019, Wuhan, Hubei province, China, became the centre of an outbreak of pneumonia of unknown cause, which raised intense attention not only within China but internationally. Chinese health authorities did an immediate investigation to characterise and control the disease, including isolation of people suspected to have the disease, close monitoring of contacts, epidemiological and clinical data collection from patients, and development of diagnostic and treatment procedures. By Jan 7, 2020, Chinese scientists had isolated a novel coronavirus (CoV) from patients in Wuhan. The genetic sequence of the 2019 novel coronavirus (2019-nCoV) enabled the rapid development of point-of-care real-time RT-PCR diagnostic tests specific for 2019-nCoV (based on full genome sequence data on the Global Initiative on Sharing All Influenza Data [GISAID] platform). Cases of 2019-nCoV are no longer limited to Wuhan. Nine exported cases of 2019-nCoV infection have been reported in Thailand, Japan, Korea, the USA, Vietnam, and Singapore to date, and further dissemination through air travel is likely.1, 2, 3, 4, 5 As of Jan 23, 2020, confirmed cases were consecutively reported in 32 provinces, municipalities, and special administrative regions in China, including Hong Kong, Macau, and Taiwan. 3 These cases detected outside Wuhan, together with the detection of infection in at least one household cluster—reported by Jasper Fuk-Woo Chan and colleagues 6 in The Lancet—and the recently documented infections in health-care workers caring for patients with 2019-nCoV indicate human-to-human transmission and thus the risk of much wider spread of the disease. As of Jan 23, 2020, a total of 835 cases with laboratory-confirmed 2019-nCoV infection have been detected in China, of whom 25 have died and 93% remain in hospital (figure ). 3 Figure Timeline of early stages of 2019-nCoV outbreak 2019-nCoV=2019 novel coronavirus. In The Lancet, Chaolin Huang and colleagues 7 report clinical features of the first 41 patients admitted to the designated hospital in Wuhan who were confirmed to be infected with 2019-nCoV by Jan 2, 2020. The study findings provide first-hand data about severity of the emerging 2019-nCoV infection. Symptoms resulting from 2019-nCoV infection at the prodromal phase, including fever, dry cough, and malaise, are non-specific. Unlike human coronavirus infections, upper respiratory symptoms are notably infrequent. Intestinal presentations observed with SARS also appear to be uncommon, although two of six cases reported by Chan and colleagues had diarrhoea. 6 Common laboratory findings on admission to hospital include lymphopenia and bilateral ground-glass opacity or consolidation in chest CT scans. These clinical presentations confounded early detection of infected cases, especially against a background of ongoing influenza and circulation of other respiratory viruses. Exposure history to the Huanan Seafood Wholesale market served as an important clue at the early stage, yet its value has decreased as more secondary and tertiary cases have appeared. Of the 41 patients in this cohort, 22 (55%) developed severe dyspnoea and 13 (32%) required admission to an intensive care unit, and six died. 7 Hence, the case-fatality proportion in this cohort is approximately 14·6%, and the overall case fatality proportion appears to be closer to 3% (table ). However, both of these estimates should be treated with great caution because not all patients have concluded their illness (ie, recovered or died) and the true number of infections and full disease spectrum are unknown. Importantly, in emerging viral infection outbreaks the case-fatality ratio is often overestimated in the early stages because case detection is highly biased towards the more severe cases. As further data on the spectrum of mild or asymptomatic infection becomes available, one case of which was documented by Chan and colleagues, 6 the case-fatality ratio is likely to decrease. Nevertheless, the 1918 influenza pandemic is estimated to have had a case-fatality ratio of less than 5% 13 but had an enormous impact due to widespread transmission, so there is no room for complacency. Table Characteristics of patients who have been infected with 2019-nCoV, MERS-CoV, and SARS-CoV7, 8, 10, 11, 12 2019-nCoV * MERS-CoV SARS-CoV Demographic Date December, 2019 June, 2012 November, 2002 Location of first detection Wuhan, China Jeddah, Saudi Arabia Guangdong, China Age, years (range) 49 (21–76) 56 (14–94) 39·9 (1–91) Male:female sex ratio 2·7:1 3·3:1 1:1·25 Confirmed cases 835† 2494 8096 Mortality 25† (2·9%) 858 (37%) 744 (10%) Health-care workers 16‡ 9·8% 23·1% Symptoms Fever 40 (98%) 98% 99–100% Dry cough 31 (76%) 47% 29–75% Dyspnoea 22 (55%) 72% 40–42% Diarrhoea 1 (3%) 26% 20–25% Sore throat 0 21% 13–25% Ventilatory support 9·8% 80% 14–20% Data are n, age (range), or n (%) unless otherwise stated. 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. * Demographics and symptoms for 2019-nCoV infection are based on data from the first 41 patients reported by Chaolin Huang and colleagues (admitted before Jan 2, 2020). 8 Case numbers and mortalities are updated up to Jan 21, 2020) as disclosed by the Chinese Health Commission. † Data as of Jan 23, 2020. ‡ Data as of Jan 21, 2020. 9 As an RNA virus, 2019-nCoV still has the inherent feature of a high mutation rate, although like other coronaviruses the mutation rate might be somewhat lower than other RNA viruses because of its genome-encoded exonuclease. This aspect provides the possibility for this newly introduced zoonotic viral pathogen to adapt to become more efficiently transmitted from person to person and possibly become more virulent. Two previous coronavirus outbreaks had been reported in the 21st century. The clinical features of 2019-nCoV, in comparison with SARS-CoV and Middle East respiratory syndrome (MERS)-CoV, are summarised in the table. The ongoing 2019-nCoV outbreak has undoubtedly caused the memories of the SARS-CoV outbreak starting 17 years ago to resurface in many people. In November, 2002, clusters of pneumonia of unknown cause were reported in Guangdong province, China, now known as the SARS-CoV outbreak. The number of cases of SARS increased substantially in the next year in China and later spread globally, 14 infecting at least 8096 people and causing 774 deaths. 12 The international spread of SARS-CoV in 2003 was attributed to its strong transmission ability under specific circumstances and the insufficient preparedness and implementation of infection control practices. Chinese public health and scientific capabilities have been greatly transformed since 2003. An efficient system is ready for monitoring and responding to infectious disease outbreaks and the 2019-nCoV pneumonia has been quickly added to the Notifiable Communicable Disease List and given the highest priority by Chinese health authorities. The increasing number of cases and widening geographical spread of the disease raise grave concerns about the future trajectory of the outbreak, especially with the Chinese Lunar New Year quickly approaching. Under normal circumstances, an estimated 3 billion trips would be made in the Spring Festival travel rush this year, with 15 million trips happening in Wuhan. The virus might further spread to other places during this festival period and cause epidemics, especially if it has acquired the ability to efficiently transmit from person to person. Consequently, the 2019-nCoV outbreak has led to implementation of extraordinary public health measures to reduce further spread of the virus within China and elsewhere. Although WHO has not recommended any international travelling restrictions so far, 15 the local government in Wuhan announced on Jan 23, 2020, the suspension of public transportation, with closure of airports, railway stations, and highways in the city, to prevent further disease transmission. 16 Further efforts in travel restriction might follow. Active surveillance for new cases and close monitoring of their contacts are being implemented. To improve detection efficiency, front-line clinics, apart from local centres for disease control and prevention, should be armed with validated point-of-care diagnostic kits. Rapid information disclosure is a top priority for disease control and prevention. A daily press release system has been established in China to ensure effective and efficient disclosure of epidemic information. Education campaigns should be launched to promote precautions for travellers, including frequent hand-washing, cough etiquette, and use of personal protection equipment (eg, masks) when visiting public places. Also, the general public should be motivated to report fever and other risk factors for coronavirus infection, including travel history to affected area and close contacts with confirmed or suspected cases. Considering that substantial numbers of patients with SARS and MERS were infected in health-care settings, precautions need to be taken to prevent nosocomial spread of the virus. Unfortunately, 16 health-care workers, some of whom were working in the same ward, have been confirmed to be infected with 2019-nCoV to date, although the routes of transmission and the possible role of so-called super-spreaders remain to be clarified. 9 Epidemiological studies need to be done to assess risk factors for infection in health-care personnel and quantify potential subclinical or asymptomatic infections. Notably, the transmission of SARS-CoV was eventually halted by public health measures including elimination of nosocomial infections. We need to be wary of the current outbreak turning into a sustained epidemic or even a pandemic. The availability of the virus' genetic sequence and initial data on the epidemiology and clinical consequences of the 2019-nCoV infections are only the first steps to understanding the threat posed by this pathogen. Many important questions remain unanswered, including its origin, extent, and duration of transmission in humans, ability to infect other animal hosts, and the spectrum and pathogenesis of human infections. Characterising viral isolates from successive generations of human infections will be key to updating diagnostics and assessing viral evolution. Beyond supportive care, 17 no specific coronavirus antivirals or vaccines of proven efficacy in humans exist, although clinical trials of both are ongoing for MERS-CoV and one controlled trial of ritonavir-boosted lopinavir monotherapy has been launched for 2019-nCoV (ChiCTR2000029308). Future animal model and clinical studies should focus on assessing the effectiveness and safety of promising antiviral drugs, monoclonal and polyclonal neutralising antibody products, and therapeutics directed against immunopathologic host responses. We have to be aware of the challenge and concerns brought by 2019-nCoV to our community. Every effort should be given to understand and control the disease, and the time to act is now. This online publication has been corrected. The corrected version first appeared at thelancet.com on January 29, 2020
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Systematic, Thematic Review of Social and Occupational Factors Associated With Psychological Outcomes in Healthcare Employees During an Infectious Disease Outbreak

            To conduct a systematic literature review to identify social and occupational factors affecting the psychological wellbeing of healthcare workers involved in the severe acute respiratory syndrome (SARS) crisis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk perception and impact of Severe Acute Respiratory Syndrome (SARS) on work and personal lives of healthcare workers in Singapore: what can we learn?

              Healthcare workers (HCWs) were at the frontline during the battle against Severe Acute Respiratory Syndrome (SARS). Understanding their fears and anxieties may hold lessons for handling future outbreaks, including acts of bioterrorism. We measured risk perception and impact on personal and work life of 15,025 HCWs from 9 major healthcare institutions during the SARS epidemic in Singapore using a self-administered questionnaire and Impact of Events Scale and analyzed the results with bivariate and multivariate statistics. From 10,511 valid questionnaires (70% response), we found that although the majority (76%) perceived a great personal risk of falling ill with SARS, they (69.5%) also accepted the risk as part of their job. Clinical staff (doctors and nurses), staff in daily contact with SARS patients, and staff from SARS-affected institutions expressed significantly higher levels of anxiety. More than half reported increased work stress (56%) and work load (53%). Many experienced social stigmatization (49%) and ostracism by family members (31%), but most (77%) felt appreciated by society. Most felt that the personal protective measures implemented were effective (96%) and that the institutional policies and protocols were clear (93%) and timely (90%). During epidemics, healthcare institutions have a duty to protect HCWs and help them cope with their personal fears and the very stressful work situation. Singapore's experience shows that simple protective measures based on sound epidemiological principles, when implemented in a timely manner, go a long way to reassure HCWs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                14 April 2020
                2020
                : 11
                : 306
                Affiliations
                [1] 1Department of Psychiatry, Nanfang Hospital, Southern Medical University , Guangzhou, China
                [2] 2Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence , Guangzhou, China
                [3] 3Department of Psychiatry, RenMin Hospital of Wuhan University , Wuhan, China
                [4] 4Department of Psychiatry, Jing Men No. 2 People's Hospital , Jingmen, China
                [5] 5Department of Psychiatry, The Chinese University of Hong Kong , Hong Kong, China
                Author notes

                Edited by: Ahmed S. BaHammam, King Saud University, Saudi Arabia

                Reviewed by: Sy Duong-Quy, Lam Dong Medical College, Vietnam; Fang Han, Peking University People's Hospital, China

                *Correspondence: Bin Zhang, zhang73bin@ 123456hotmail.com ; Zhongchun Liu, zcliu6@ 123456whu.edu.cn

                This article was submitted to Sleep Disorders, a section of the journal Frontiers in Psychiatry

                †These authors have contributed equally to this work

                Article
                10.3389/fpsyt.2020.00306
                7171048
                32346373
                7f119ea2-ee54-4201-88ed-5252c78bf563
                Copyright © 2020 Zhang, Yang, Liu, Ma, Wang, Cai, Du, Li, Kang, Su, Zhang, Liu and Zhang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 March 2020
                : 27 March 2020
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 34, Pages: 9, Words: 5090
                Funding
                Funded by: Nanfang Hospital 10.13039/501100010112
                Funded by: Bureau of Education of Guangzhou Municipality 10.13039/501100010819
                Award ID: 2019KC106
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Psychiatry
                Original Research

                Clinical Psychology & Psychiatry
                insomnia,medical staff,covid-19,mental health,sleep quality,stress,isolation,outbreak

                Comments

                Comment on this article