12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isosamidin from Peucedanum japonicum Roots Prevents Methylglyoxal-Induced Glucotoxicity in Human Umbilical Vein Endothelial Cells via Suppression of ROS-Mediated Bax/Bcl-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methylglyoxal (MGO) is a highly reactive metabolite of glucose. Elevated levels of MGO induce the generation of reactive oxygen species (ROS) and cause cell death in endothelial cells. Vascular endothelial cell damage by ROS has been implicated in the progression of diabetic vascular complications, cardiovascular diseases, and atherosclerosis. In this study, the protective effect of isosamidin, isolated from Peucedanum japonicum roots, on MGO-induced apoptosis was investigated using human umbilical vein endothelial cells (HUVECs). Among the 20 compounds isolated from P. japonicum, isosamidin showed the highest effectiveness in inhibiting MGO-induced apoptosis of HUVECs. Pretreatment of HUVECs with isosamidin significantly prevented the generation of ROS and cell death induced by MGO. Isosamidin prevented MGO-induced apoptosis in HUVECs by downregulating the expression of Bax and upregulating the expression of Bcl-2. MGO treatment activated mitogen-activated protein kinases (MAPKs), such as p38, c-Jun N terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). In contrast, pretreatment with isosamidin strongly inhibited the activation of p38 and JNK. Furthermore, isosamidin caused the breakdown of the crosslinks of the MGO-derived advanced glycation end products (AGEs). These findings suggest that isosamidin from P. japonicum may be used as a preventive agent against MGO-mediated endothelial dysfunction in diabetes. However, further study of the therapeutic potential of isosamidin on endothelial dysfunction needs to explored in vivo models.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes.

          To reconstruct the events that may contribute to the accelerated death of retinal vascular cells in diabetes, we investigated in situ and in vitro the activation of nuclear factor-kappaB (NF-kappaB), which is triggered by cellular stress and controls several programs of gene expression. The retinal capillaries of diabetic eye donors showed an increased number of pericyte nuclei positive for NF-kappaB, when compared with nondiabetic donors, whereas endothelial cells were negative. Microvascular cell apoptosis and acellular capillaries were increased only in the diabetic donors with numerous NF-kappaB-positive pericytes. Likewise, high glucose in vitro activated NF-kappaB in retinal pericytes but not in endothelial cells, and increased apoptosis only in pericytes. Studies with NF-kappaB inhibitors suggested that in pericytes, basal NF-kappaB has prosurvival functions, whereas NF-kappaB activation induced by high glucose is proapoptotic. Pericytes exposed to high glucose showed increased expression of Bax and of tumor necrosis factor-alpha, which were prevented by the NF-kappaB inhibitors and mimicked by transfection with the p65 subunit of NF-kappaB, and failed to increase the levels of the NF-kappaB-dependent inhibitors of apoptosis. Colocalization of activated NF-kappaB and Bax overexpression was observed in the retinal pericytes of diabetic donors. A proapoptotic program triggered by NF-kappaB selectively in retinal pericytes in response to hyperglycemia is a possible mechanism for the early demise of pericytes in diabetic retinopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation.

            Chronic hyperglycemia causes structural alterations of proteins through the Maillard reaction. In diabetes, methylglyoxal (MGO)-induced hydroimidazolones are the predominant modification. In contrast to acute hyperglycemia, mitochondrial respiration is depressed in chronic diabetes. To determine whether MGO-derived protein modifications result in abnormalities in mitochondrial bioenergetics and superoxide formation, proteomics and functional studies were performed in renal cortical mitochondria isolated from rats with 2, 6, and 12 mo of streptozotocin-induced diabetes. MGO-modified proteins belonged to the following two pathways: 1) oxidative phosphorylation and 2) fatty acid beta-oxidation. Two of these proteins were identified as components of respiratory complex III, the major site of superoxide production in health and disease. Mitochondria from rats with diabetes exhibited a diminution of oxidative phosphorylation. A decrease in the respiratory complex III activity was significantly correlated with the quantity of MGO-derived hydroimidazolone present on mitochondrial proteins in both diabetic and control animals. In diabetes, isolated renal mitochondria produced significantly increased quantities of superoxide and showed evidence of oxidative damage. Administration of aminoguanidine improved mitochondrial respiration and complex III activity and decreased oxidative damage to mitochondrial proteins. Therefore, posttranslational modifications of mitochondrial proteins by MGO may represent pathogenic events leading to mitochondria-induced oxidative stress in the kidney in chronic diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications.

              P Kalapos (1999)
              Despite the growing interest towards methylglyoxal and glyoxalases their real role in metabolic network is still obscure. In the light of developments several reviews have been published in this field mainly dealing with only a narrow segment of this research area. In this article a trial is made to present a comprehensive overview of methylglyoxal research, extending discussion from chemistry to biological implications by reviewing some important characteristics of methylglyoxal metabolism and toxicity in a wide variety of species, and emphasizing the action of methylglyoxal on energy production, free radical generation and cell killing. Special attention is paid to the discussion of alpha-oxoaldehyde production in the environment as a potential risk factor and to the possible role of this a-dicarbonyl in diseases. Concerning the interaction of methylglyoxal with biological macromolecules (DNA, RNA, proteins) an earlier review (Kalapos, Toxicology Letters, 73, 1994, 3-24) means a supplementation to this paper, thus hoping the avoidance of unnecessary bombast. The paper arrives at the conclusion that since the early stage of evolution the function of methylglyoxalase pathway has been related to carbohydrate metabolism, but its significance has been changed over the thousands of years. Namely, at the beginning of evolution methylglyoxalase path was essential for the reductive citric acid cycle as an anaplerotic route, while in the extant metabolism it concerns with the detoxification of methylglyoxal and plays some regulatory role in triose-phosphate household. As there is a tight junction between methylglyoxal and carbohydrate metabolism its pathological role in the events of the development of diabetic complications emerges in a natural manner and further progress is hoped in this field. In contrast, significant advancement cannot be expected in relation to cancer research.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                17 June 2020
                June 2020
                : 9
                : 6
                : 531
                Affiliations
                [1 ]Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea; Do.Moon-ho@ 123456kfri.re.kr
                [2 ]College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; wogur5378@ 123456gc.gachon.ac.kr
                [3 ]College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; jm212224@ 123456snu.ac.kr (J.A.); everpolaris@ 123456snu.ac.kr (M.J.H.); jwkim@ 123456snu.ac.kr (J.K.)
                [4 ]Gachon Institute of Pharmaceutical Science, Gachon University; #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
                [5 ]Gachon Medical Research Institute, Gil Medical Center, Inchon 21565, Korea
                Author notes
                [* ]Correspondence: sunnykim@ 123456gachon.ac.kr ; Tel.: +82-32-820-4931; Fax: +82-32-820-4829
                [†]

                The authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-4304-0198
                https://orcid.org/0000-0001-8044-5613
                Article
                antioxidants-09-00531
                10.3390/antiox9060531
                7346203
                32560521
                7ee6fab8-5541-412f-b07e-36d10a32b31a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2020
                : 15 June 2020
                Categories
                Article

                methylglyoxal,reactive oxygen species,human umbilical vein endothelial cells,peucedanum japonicum,isosamidin,mitogen-activated protein kinases,advanced glycation end products,endothelial dysfunction

                Comments

                Comment on this article